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Summary

Android is the most used operating system for smartphones and one of its
popular features is the ability to install third-party applications. These apps
may access the user’s personal information and can cost the user money,
for example by sending text messages. These abilities can be misused, and
malicious apps are a relevant problem for Android. Static analysis can ap-
proximate program behaviour and this approximation can be used to find
malicious behaviour in apps.

We define a static analysis for Android apps based on our previous formal-
ization of the Dalvik instruction set that resides beneath Android apps. We
expand the operational semantics to more accurately model the Android
implementation, and we update our flow logic based analysis with these
changes and improve its precision to achieve useful results when analyzing
real apps.

Reflection is widely used in Android apps, and we expand the analysis further
to include support for reflective calls. While reflection is a dynamic feature,
and therefore usually not handled by static analyses, we define the analysis
as a safe over-approximation that relies on constant strings specified in the
app for the reflection.

We demonstrate how the analysis can be implemented as we develop a pro-
totype in Python that generates Prolog clauses expressing the constraints
imposed by the flow logic. The prototype can be used to generate call graphs
that include reflective calls. Furthermore, we demonstrate how the prototype
can determine if any text messages can be sent with hardcoded strings. We
have tested the tool on known Android malware and on small real-world apps
from Google Play.
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Preface

Our work on formalizing and analyzing the Dalvik platform started in Septem-
ber 2011 on our 9th semester at Aalborg University. It has been treated
in [WK12] and parts of it have been presented at Bytecode 2012, the Sev-
enth Workshop on Bytecode Semantics, Verification, Analysis and Trans-
formation in collaboration with René Rydhof Hansen and Mads Chr. Ole-
sen [KWOH12]. Furthermore, parts of the contributions of this thesis will be
submitted for the Bytecode 2012 special issue that is to appear in Elsevier’s
Science of Computer Programming as an extended version of [KWOH12].

As a service to the reader and to present the complete work in this the-
sis, we provide a summary of [WK12] and [KWOH12]. Chapters 1 and 2
borrow heavily from chapters from [WK12]. Chapter 2 also contains parts
from [KWOH12] as well as new material on class transformation and Javascript
interfaces. Chapters 3 and 4 sum up chapters from [WK12] but also discuss
several of the many updates we have made to the material as well as our new
treatment of concurrency. Section 5.1 presents our full treatment of reflection
analysis in Dalvik which was begun in [KWOH12].

The work described in this thesis involves these technologies and fields:

• The Java programming language

• Bytecode

• The Android platform

• Operational semantics

• Static program analysis

Some concepts are introduced, but in general, the reader is assumed to be
acquainted with these topics.

Finally, we would like to thank René Rydhof Hansen and Mads Chr. Olesen
for the project idea and for supervising the project.
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Chapter 1

Introduction

The Android operating system is the most used operating system for smart-
phones [Nie11]. One of its popular features is the ability to enhance the
functionality of a smartphone through custom applications — apps. These
apps are available through app markets such as Google Play [Goo12a]. Apps
may access the user’s personal information, and are often able to access
the Internet, send text messages or even make phone calls. With more
and more features available on the smartphone, and more and more private
data, the potential profit of malicious apps rise. Examples of such malicious
apps include some that steal private information from the users [EGC+10]
and some that cost the users money by covertly sending overpriced text-
messages [Ali11].

In this project, we focus on the problems with malicious apps for Android.
We base our work on our formalization for the bytecode language run by
Android’s virtual machine, Dalvik, in [WK12] where operational semantics
and a control flow analysis is specified, based upon a large study of the
instructions and API usage in typical Android apps.

We expand the control flow analysis and the operational semantics with a
formalization of some of the more dynamic features of Dalvik, namely reflec-
tion and Javascript interfaces. Furthermore, we improve the precision of the
control flow analysis and implement it in a Prolog-based prototype. The pro-
totype has been made to run on real-world Android apps, an approach which
has led us to become aware of many details in the implementation, and has
led to changes in the formalization to comply with these observations.

The rest of this chapter summarizes the background for this project: A
short introduction to program analysis for Android including related work,
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Program Analysis Chapter 1

an overview of Android and how its permissions are enforced and finally
an introduction to Dalvik. These sections are slightly updated versions of
chapters found in [WK12].

1.1 Program Analysis

Program analysis can be used to determine behaviour of an application. In
our case, we want to keep track of information flow within an application.
This can for example be used to determine if leakage of private information
can occur, and whether an application is able to misuse access to services
that cost the user money. A typical example of where leakage can occur
on Android is in an app that is allowed to access personal information, e.g.
the contacts on the phone, and at the same time is allowed to access the
Internet.

Previous studies have “uncovered pervasive use/misuse of personal/phone
identifiers” [EOMC11] and others have shown that 66% of a set of 50 pop-
ular apps that send personal information through the internet connection
do not rely on it to function [HHJ+11], signifying that it is a leakage to
the advantage of advertisers and other third parties rather than to the user.
Several malicious apps have been found on Android Market [Aeg12], with
the hidden purpose of sending text messages to premium numbers. Dynamic
and static program analysis can be used to detect such leakage or malicious
behaviour [EGC+10].

Dynamic analysis requires the ability to run the application to be analyzed
and, at runtime, track the information and how it is used. Furthermore, if
the goal is to determine whether leakage is possible, and not just whether it
happens in a specific run, dynamic analysis requires a complete input domain
for the application. In [EGC+10] and [HHJ+11], they develop a dynamic
analysis for Android, where personal information is tracked at runtime in a
modified Android base to determine if and how it leaves the phone. These
studies focus only on privacy issues and require a custom version of Android
in order to run.

Static analysis can be run on the program source, binary executable or in-
termediate steps. It does not require execution of the application, but it is
able to determine conservative approximations of the flow of control or data
within the application. Using static analysis, it is possible to track the lo-
cations in the application where personal information can propagate, and in
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Chapter 1 Android

turn answer whether or not an application might leak this personal informa-
tion. Static analysis can also be used to find patterns of malicious behaviour
or typical programming errors in applications.

For protection of private data and the capabilities of the smartphone,
[FJM+11] have made a background service and a tool that rewrites the Dalvik
bytecode in apps to use the service instead of direct API calls. By re-routing
all calls that require permissions or access personal information to their ser-
vice, they are able to discover what personal information leaves the device,
and to block or modify the information before it does so. The service then al-
lows the user to set permissions that are more fine-grained than the standard
Android permissions. However, this approach requires knowledge of each app
to determine what permissions it should be granted by the service.

To develop a formal analysis of Android apps, it is necessary to have a for-
mal specification of its instructions. Operational semantics formally specify
exactly what instructions do, and we base our analysis on our operational
semantics for Dalvik bytecode in [WK12]. In this project, we update the se-
mantics. In addition, a control flow analysis is needed as a basis for a detailed
analysis of information flow. We expand the control flow analysis in [WK12]
with additional precision and support for some dynamic features.

1.2 Android

Android is an operating system for mobile devices that ships with various
middleware and pre-installed applications [And11c]. It is based on the Linux
kernel and allows third-party developers to create custom apps that are
distributed on Google Play [Goo12a] and other app markets for end-users
to download. Each app runs isolated in an application sandbox. In the
sandbox, the Dalvik Virtual Machine runs Dalvik bytecode which is usually
compiled from Java. Apps can include native code for the ARM proces-
sor, typically written in C or C++, and this is also run inside the sandbox.
Android enforces permissions within the sandbox, such that apps can only
access information they have been granted access to. The permissions are
declared statically by the developer in an XML file called the Android Mani-
fest [And11b]. They are presented at install time and if they are not accepted
by the user, installation is aborted. There exists a large set of permissions,
including access to the Internet, ability to read or write contact information,
and to send or receive text messages.

3



Dalvik Chapter 1

Google Play contains paid as well as free apps, with more than 500,000
different apps as of May 2012 [Mob12]. The average Android user has 32 apps
installed on their device [Cha12]. Publishing apps on the market requires a
market account which can be bought for a small fee. Each app submitted
to Google Play is automatically tested for known malware and analyzed for
unwanted behaviour [Loc12], but we have not been able to find any details
on how this process works.

1.3 Dalvik

Android apps are run in the Dalvik Virtual Machine. It is similar to
regular Java virtual machines but there are several differences between
them [EOMC11]. The Dalvik VM is based on a register architecture, while
regular Java VMs are stack-based. Dalvik instructions use register arguments
to indicate which data to work with instead of using an operand stack. The
instruction set is affected by this and differs from Java bytecode where several
instructions are used to explicitly move data to and from the operand stack.
On the other hand, Dalvik uses some specialised instructions for accessing
registers with numbers 16 and up, i.e., those that require more than 4 bits to
address. We present some of the individual instructions in Chapter 3.
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Chapter 2

Study of Android Apps

To formalize the most used and important features of the Android platform,
we collected and examined 1,700 of the most popular free apps on Google
Play [Goo12a] (then known as Android Market) in [WK12]. The data set
consisted of the 50 most popular apps of each category on Android Market in
November 2011. App sizes (*.apk file) ranged from 16 KB to 50 MB while
the bytecode content (classes.dex file) ranged from 1.3 KB to 7.4 MB.

We generalized the Dalvik bytecode instruction set into 39 semantically dif-
ferent instructions, and the study showed that all types of instructions were
used in most apps. This led us to formalize the full generalized instruction
set. The generalization process itself was fairly straightforward and the result
is shown in Appendix A.

The study also included an insight into the usage of special Java features and
Android APIs that could affect the design of static analyses. We uncovered
several of these that challenge static analysis of Android apps. Here, we
extend the study of these features, using the same data set as in [WK12].
The topics in this chapter are slightly updated explanations from [KWOH12]
and [WK12], except Class Transformation and Javascript Interfaces which
have not been presented before.

Threading, as indicated by the use of monitors, corresponding to the Java
synchronized keyword, was found in 88% of the apps. Furthermore,
90.18% of the apps include a reference to the java/lang/Thread li-
brary. These observations are not conclusive, but indicate that multi-
threaded programming is widespread. We discuss concurrency further
in Section 4.3.
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The Java method Runtime.exec() is used to execute programs in a sep-
arate native process and is present in 19.53% of the apps. We manually
inspected some of these uses. Most of them do not use a hardcoded
string as the argument to exec(), but of those that do, we found ex-
ecution of both the su and logcat programs which, if successful, give
the app access to run programs as the super user on the platform or
read logs (with private data [Wil11]) from all applications, respectively.
Some apps also use the pm install command to install other apps at
runtime.

Class Loading Of the studied apps 39.71% contain a reference to the
class loader library, java/lang/ClassLoader, or a subclass (e.g.
dalvik/system/DexClassLoader). However, only 13.1% of apps use
the loadClass() or defineClass() methods to actually load or de-
fine classes at runtime. Class loading allows the loading of Dalvik
executable (DEX) files and JAR files while class definition allows for
programmatic definition of Java classes including from scripting lan-
guages such as Javascript. If the classes being loaded are not present,
e.g., if they are downloaded from the Internet, the app cannot be an-
alyzed statically before installation. Furthermore, if the classes being
loaded are created dynamically from other languages, analyzing the
use before installation would require the analysis tool to parse/ana-
lyze these languages. A simpler solution for handling the apps that
use these features would be to analyze the class just before it is being
loaded, on the device. However, we consider this as out of scope for
this project.

Class Transformation allows developers to change behaviour of classes
at runtime, before it is loaded by the VM. It is a Java feature, and
is therefore also available in Android. The transformations allowed
include adding new instructions and changing control flow. We found
no apps in our data set that use this feature, and will therefore not
return to this subject.

Reflection is used extensively in Android apps for accessing private and
hidden classes, methods, and fields, for JSON and XML parsing, and
for backward compatibility [FCH+11]. We confirmed these observations
by manual inspection. Of the 940 apps studied in [FCH+11], 61% were
found to use reflection, and using automated static analysis they were
able to resolve the targets for 59% of the reflective calls.

73% of the apps in our data set use reflection. This indicates that
a formalization of reflection in Dalvik is necessary to precisely analyze
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most apps. Reflection resolves classes, methods, and fields from strings.
When these are statically known, static analysis becomes possible. We
treat this in Section 5.1.

Javascript Interfaces allow Javascript in a webpage embedded in an app
to control that app. Android supports in-app loading of webpages,
through the WebKit API [Goo12b] that provides a custom embed-
ded web browser. This API includes the addJavascriptInterface()

method whose purpose is to make the methods on a Java object avail-
able to Javascript code. The method is used in 39% of the apps in
our data set. The interface allows webpages loaded by the app to
call methods on the Java object. Previous studies have shown that
advertisement and analytics libraries use this to give the third-party
advertisement companies access to sensor information, such as location
updates [LHD+11]. We confirmed this use through manual inspection,
and furthermore discovered apps that were practically webpages, and
where the Dalvik code merely loads the page and extends the browser
functionality, e.g. by allowing the webpage to send text messages from
the phone.
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Chapter 3

Dalvik Semantics

In this section we describe the formalization of the Dalvik bytecode lan-
guage using operational semantics. We summarize the formalization done in
[WK12] and present semantic rules for a small selection of instructions and
we discuss updates since that work was done.

The approach is inspired by a similar effort in formalizing the Java Card
bytecode language [Siv04, Han05]. To ensure that the formalization cor-
rectly represents the informal Dalvik semantics, we based the formalization
on the documentation for Dalvik [And11d], inspection of the source code
for the Dalvik VM and Apache Harmony Java in Android [And11e], tests of
handwritten bytecode, and experiments with disassembly of compiled Java
code. We have made a number of generalizations, including an idealised pro-
gram counter abstracting away the length of instructions. These simplify the
semantic rules but do not make the semantics less powerful [WK12].

We have formalized the generalized instruction set, except for the instructions
related to concurrency, but including exception handling. The descriptions
in this chapter are updated versions of those from [WK12].

3.1 App Structure

To be able to formalize the semantics we will first need a formal definition of
the structure of Android apps. In [WK12], we specified the full app structure,
starting from the App domain. Here, we summarize the most important
domains as well as the changes made since [WK12]. The complete set of
domains can be found in Appendix B.

8



Chapter 3 App Structure

We use record notation [Siv04], which is a notation for domains with access
functions. The domain D = D1 × . . .× Dn equipped with functions f i : D →
Di is expressed D = (f 1: D1)× . . .× (f n: Dn) . The access functions will be
used in an object-oriented style where, for d ∈ D, f i(d) is written d.f i and
f i(d, a1, . . . , am) is written d.f i(a1, . . . , am). The notation d[f 7→ x] expresses
the domain d where the value of access function f is updated to x.

One of the central domains, Class, is specified with a class name, an app in
which the class is defined, the Java package it belongs to, a superclass (where
Class⊥ = Class ∪ {⊥} and the superclass of java/lang/Object is defined to
be ⊥), as well as sets of implemented methods, method declarations (for
abstract classes), fields, access flags and implemented interfaces:

Class = (name: ClassName)×
(app: App)×
(package: Package)×
(super: Class⊥)×
(methods:P(Method))×
(methodDeclarations:P(MethodDeclaration))×
(fields:P(Field))×
(accessFlags:P(AccessFlag))×
(implements:P(Interface))

The access function methodDeclarations has been added since [WK12] such
that the Class domain can also represent abstract classes.

In Dalvik, interfaces are represented as a special type of class that inherits
from java/lang/Object and “implements” the interfaces that it itself ex-
tends. For simplicity, we have included it as a separate domain with names
closer to their semantic purposes. Beside the methods specified in an in-
terface (method declarations), it may also include the implementation of a
class constructor (clinit) that initializes static fields. Interfaces also sup-
port multiple inheritance from other interfaces. In total:

Interface = (name: ClassName)×
(app: App)×
(package: Package)×
(super:P(Interface))×
(methodDeclarations:P(MethodDeclaration))×
(clinit: Method⊥)×
(fields:P(Field))×
(accessFlags:P(AccessFlag))×
(implementedBy :P(Class))

9
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The access function clinit has been added since [WK12], and the methods
specified in an interface have been changed to method declarations, as shown
above, since they are not concrete implementations.

A method signature specifies how a method can be called: The name, the
class or interface where it is declared (though not necessarily implemented),
and the types: A sequence of types for the arguments (a sequence A∗ meaning
an element from the set {∅, A,A×A,A×A×A, . . .}) and a return type:

MethodSignature = (name: MethodName)×
(class: Class ∪ Interface)×
(argTypes: Type∗)×
(returnType: Type ∪ {void})

Method declarations specify everything about a method except its imple-
mentation. They appear in interfaces and abstract classes and beside the
method signature specify a kind (explained below), a set of access flags, and
the checked exceptions the method can throw:

MethodDeclaration = (methodSignature: MethodSignature)×
(kind: Kind)×
(accessFlags:P(AccessFlag))×
(exceptionTypes:P(Class))

The kind of a method can be direct, which is used for non-overridable
methods, i.e., constructors and private or final methods, static for static
methods (that are not direct), and virtual for normal, overridable methods
including methods specified in interfaces.

An actual method specifies the same as a method declaration plus the im-
plementation details: A function mapping locations in the method (program
counter values) to instructions, the number of registers used for local vari-
ables, a set of exception handlers, and a function mapping locations of data
tables in the bytecode to the content of these tables:

Method = (methodDeclaration: MethodDeclaration)×
(instructionAt: PC→ Instruction)×
(numLocals:N0)×
(handlers:N0 → ExcHandler)×
(tableAt: PC→ ArrayData ∪ PackedSwitch ∪ SparseSwitch)

For methods, the class of the method signature specifies the class (or inter-
face, for clinit) where the method is implemented.

10



Chapter 3 Semantic Domains

For convenience, we use e.g. m.name where m ∈ Method as a shortcut to
refer to m.methodDeclaration.methodSignature.name.

In [WK12] we only distinguished between methods and method signatures
but this was insufficient to correctly represent methods specified in abstract
classes and interfaces as well as reflection of method declarations as we de-
scribe in Section 5.1.4.

The types we model in Dalvik are either reference types or primitive types,
and reference types can be either references to classes or to arrays. We specify
this using BNF notation:

Type ::= RefType | PrimType
RefType ::= Class | ArrayType

The full type hierarchy is specified in Appendix B with the update made
since [WK12] that a reference can not be an interface. Furthermore, the
notion of subtyping between classes, interfaces, and array types is formalized
as the subclass relation, �, which we will not discuss further here.

The Instruction domain which the instructionAt function of the Method do-
main maps to represents the set of all the generalized Dalvik instructions. For
example, an instruction is const v c, where v and c belong to the semantic
domains Register and Prim, respectively.

3.2 Semantic Domains

Here follows a summary of the semantic domains from [WK12]. Values in
our representation of Dalvik programs are either primitive values or heap
references: Val = Prim + Ref. Compared to the version in [WK12], we have
removed Class as a component domain to correctly reflect the way, we have
found the const-class instruction to work (“class references” are references
to appropriate java/lang/Class instances as we discuss in Section 3.4.3).
The details of primitive values will not be relevant so they can simply be
represented as integers: Prim = Z. References are abstract locations or
the null reference. In Dalvik, null references are represented by the num-
ber zero but we use null to be able to distinguish them in the semantics:
Ref = Location∪{null}. Since Dalvik does not support pointers and pointer
arithmetic, it will not be necessary to know what locations are except that
we can model an arbitrary number of unique locations.
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The Dalvik VM uses registers for computation and storage of local variables.
Registers contain values, or ⊥ in the case of undefined register contents:
LocalReg = Register → Val⊥. Dalvik has 216 numbered regular registers
(which we will generalize to N0) and a special register for holding return
values: Register = N0 ∪ {retval}.

For storing objects, arrays and static fields, Dalvik uses the heap. To simplify
the representation, we use a static heap S ∈ StaticHeap which maps fields to
values while the normal (dynamic) heap maps references to objects or arrays.
Objects have a class and a mapping of fields to values while arrays have a
type, a size and a mapping of indices to values:

StaticHeap = Field→ Val
Heap = Ref → (Object + Array)

Object = (class: Class)× (field: Field→ Val)
Array = (type: ArrayType)× (length:N0)× (value:N0 → Val)

3.3 Program Configurations

A program counter value paired with a method gives an absolute address of
an instruction in an app: Addr = Method× PC, where program counters are
integer indices of instructions: PC = N0. We can then define stack frames
to contain a method and a program counter, i.e., an address, and the local
registers: Frame = Method× PC× LocalReg.

This leads to the following definition of call stacks as a sequence of frames
except that the top frame may be an exception frame representing an as
yet unhandled exception: CallStack = (Frame + ExcFrame) × Frame∗. An
exception frame contains the location of its corresponding exception object
on the heap and the address of the instruction that threw the exception:
ExcFrame = Location × Method × PC. When referring to a call stack, we
use the notation 〈m, pc,R〉 :: SF , where 〈m, pc,R〉 represents the top stack
frame (in this case a non-exception frame), the operator :: appends a stack
frame to a call stack, and SF represents the (possibly empty) rest of the
stack.

The configuration that we base our semantic rules on consists of the heaps and
a call stack: Configuration = StaticHeap × Heap × CallStack. The semantic
rules are reductions of the form A ` C =⇒ C ′, where the app A ∈ App
and C,C ′ ∈ Configuration, or equivalently A ` 〈S,H, SF 〉 =⇒ 〈S ′, H ′, SF ′〉,
where S, S ′ ∈ StaticHeap, H,H ′ ∈ Heap, and SF, SF ′ ∈ CallStack.
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Unlike normal Java programs, Android apps have no main() method but are
a collection of classes, some of which have methods that may be called by the
Android system. These include constructors, onStart() methods for Activ-
ities, Services, etc., and onClick() methods for GUI elements, and they are
discussed in Section 6.6.3. The only requirement for an initial configuration
is that static fields are initialized in S. Also, since Android apps are not
generally expected to terminate, we have no termination state.

3.4 Examples of Semantic Rules

With the domains and the notation defined, we are now ready to define
actual semantic rules. We present a selection of interesting instructions and
highlight some of the changes since [WK12]. For the full set of semantic
rules, see Appendix C.

3.4.1 Imperative Core

A simple instruction is the move instruction that copies content from one
register to another. We use m.instructionAt(pc), where m ∈ Method, pc ∈
PC, to identify the instruction we are working with. The move instruction
updates the configuration with an incremented program counter in order to
move to the next instruction, and updates the register valuation such that
the destination register is mapped to the content of the source register:

m.instructionAt(pc) = move v1 v2
A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ R(v2)]〉 :: SF 〉

In general, the first argument of an instruction is the destination register
when one is relevant.

For conditional branching we use the function relOpop(c1, c2) = c1 op c2 where
op ∈ RelOp = {eq, ne, lt, le, gt, ge}. The result of the method is either
true or false, depending of the relation between the two variables, and the
implementation is trivial. The auxiliary function is used in our two rules for
the if instruction:

m.instructionAt(pc) = if op v1 v2 pc′ relOpop(R(v1), R(v2))

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′, R〉 :: SF 〉

m.instructionAt(pc) = if op v1 v2 pc′ ¬relOpop(R(v1), R(v2))

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

13
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The first applies when relOpop is true, and the second when it is false. If the
result is true, the program counter is updated to the new one given as an
argument for the instruction. Otherwise, we move to the next instruction in
the method.

3.4.2 Method Invocation

We now look at the main instruction for invoking methods with dynamic
dispatch where the implementation of a method is looked up at runtime in
the Java class hierarchy. The resolution uses the notation meth/m to indicate
that a method signature meth ∈ MethodSignature is compatible with a given
method m ∈ Method when their names, argument types and return type
are equal. To resolve the actual method that has to be called, we use the
following function to search through the class hierarchy:

resolveMethod(meth, cl) =
⊥ if cl = ⊥
m if m ∈ cl .methods ∧meth / m
resolveMethod(meth, cl .super) otherwise

In [WK12], this was a set of functions that also matched the method kind
depending on the type of invoke instruction it was used in, but that was
not necessary since there cannot exist two methods in the same inheritance
chain that differ only in kind.

The invoke-virtual instruction receives n arguments and the signature of
the method to invoke. The first argument, v1, is a reference to the ob-
ject on which the method should be invoked. The method is resolved using
resolveMethod and is put into a new frame on top of the call stack, with
the program counter set to 0. A new set of local registers, R′, is created,
where the first m′.numLocals registers are mapped to ⊥Val such that they are
initially undefined, and the arguments are then mapped into the following
registers:

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth
R(v1) = loc loc 6= null o = H(loc)

n = arity(meth) m′ = resolveMethod(meth, o.class) 6= ⊥
R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,

m′.numLocals 7→ v1, . . . ,m
′.numLocals + n− 1 7→ vn]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

In [WK12], the arity function simply mapped a method signature to the
length of the argTypes domain sequence. We have changed this to a function
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that maps to the number of 32 bit register required for the arguments. This is
the same as the number of arguments except that long and double primitive
values take up two registers. This correctly reflects the way wide data type
arguments are transferred. Also, we use the numLocals access function as
the number of 32 bit registers used for local variables as it is encoded in
Dalvik instead of the maxLocal function in [WK12].

If the object reference for invoke-virtual is null, a NullPointerException

is pushed on the call stack:

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth
R(v1) = null (H ′, loce) = newObject(H, NullPointerException)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈loce,m, pc〉 :: 〈m, pc,R〉 :: SF 〉

Standard Java exceptions belong to the java/lang package but we leave
this out for brevity. The rules for finding the relevant exception handler are
specified in [WK12] and can also be seen in Appendix C. In the event that
method resolution fails, another runtime exception is thrown:

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth
R(v1) = loc loc 6= null o = H(loc)

n = arity(meth) resolveMethod(meth, o.class) = ⊥
(H ′, loce) = newObject(H, NoSuchMethodError)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈loce,m, pc〉 :: 〈m, pc,R〉 :: SF 〉

This particular situation only occurs if the app has been manipulated since
compilation or at runtime. In general, many instructions have runtime ex-
ceptions but since they take up space and are trivial to add, we leave them
out of the semantics here.

The other invoke instructions are similar. Differences include that
invoke-static resolves from the class specified in the method signature
because there is no object with a runtime class, and that invoke-direct

does not resolve through the class hierarchy because direct methods are im-
plemented in the class that the method is invoked on.

3.4.3 Instantiation

Finally, we turn focus to the part of instructions concerned with objects. To
allocate objects on the heap, we use an auxiliary function:

newObject: Heap× Class→ Heap× Ref
newObject(H, cl) = (H ′, loc)
where loc /∈ dom(H) , H ′ = H[loc 7→ o] , o ∈ Object , o.class = cl
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The function takes an existing heap and a class, and returns a modified heap
along with a reference to a new location for the allocated object. It is used in
the rule for new-instance which is supplied with the class for which a new
instance should be created and a destination register for the reference to the
object:

m.instructionAt(pc) = new-instance v cl (H ′, loc) = newObject(H, cl)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[v 7→ loc]〉 :: SF 〉

The const-string instruction is a specialized instruction that creates a
java/lang/String instance with a value from a DEX file constant pool and
maps the destination register to the new reference. In our representation,
the constants are inlined for convenience such that the string can simply be
referred to as s:

m.instructionAt(pc) = const-string v s
(H ′, loc) = newObject(H, java/lang/String)
o = H ′(loc) o′ = o[field 7→ o.field[value 7→ s]]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′[loc 7→ o′], 〈m, pc+ 1, R[v 7→ loc]〉 :: SF 〉

Here, the fully qualified class name is used as a shorthand for the actual
semantic String class, and value is the name of the character array rep-
resenting the string in the Apache Harmony Java implementation used in
Android.

Another specialized instruction is const-class which we have updated
since [WK12]. Instead of using classes as a separate type of reference,
using regular object references to java/lang/Class instances is closer to
the Dalvik implementation and will be necessary for our reflection analysis
in Section 5.1. A java/lang/Class object has a field name which refers
to a java/lang/String with the name of the class. The instruction cre-
ates a java/lang/Class and a java/lang/String instance and sets the
java/lang/String field value to the name of the given class and a maps
the field name on the java/lang/Class to the newly created string:

m.instructionAt(pc) = const-class v cl
(H ′, locc) = newObject(H, java/lang/Class)

(H ′′, locs) = newObject(H ′, java/lang/String)
oc = H ′′(locc) o′c = oc[field 7→ oc.field[name 7→ locs]]

os = H ′′(locs) o′s = os[field 7→ os.field[value 7→ cl .name]]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′′[locc 7→ o′c, locs 7→ o′s], 〈m, pc+ 1, R[v 7→ loc]〉 :: SF 〉

We make no effort to formalize or verify the integrity of the bytecode, such as
jump destinations and instruction widths. These are verified by the Dalvik
bytecode verifier before the bytecode is executed. Furthermore, we have only
included sanity checks, such as checks for null dereferences and subtypes,
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in some of the semantic rules, and deliberately left them out for many of
the rules as the essence of the rules would otherwise be clouded by error
handling.
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Analysis

In this chapter we define the control flow analysis for Dalvik that we use in
our prototype analysis tool described in Chapter 6. The control flow analysis
is based on the semantics from Chapter 3 and the one defined in [WK12].
The analysis is expressed as flow logic judgements [NNH99] which is based
on partial orders and lattices, for details refer to [WK12]. First, we present
the abstract domains used in the control flow analysis and next we present
flow logic judgements for a selection of instructions. The abstract domains
are collected in Appendix D and the full set of flow logic judgements in
Appendix E.

4.1 Abstract Domains

The static analysis cannot determine all the runtime values, and therefore it
is necessary to represent some of these values as part of abstract domains.
The abstract domains are abstractions of the concrete semantic domains
presented in Section 3.2.

The abstract domain for values will consist of primitive values, references,
and the null reference: Val = Prim + Ref + {null}. As with the semantic
domain Ref, Ref is updated since [WK12] to no longer contain Class. The
semantic Ref also contains null, but due to the way we model abstract
references, it is now placed directly in Val.

The overbar distinguishes the abstract domains from the semantic domains.
The analysis is an over-approximation, and we use a ĥat to represent sets of
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values: V̂al = P(Val). These abstract domains are complete lattices ordered
by subset inclusion.

A reference can refer to either an object or an array: Ref = ObjRef + ArrRef.
The analysis specified in [WK12] represented object references by a single
reference for each class. To analyze reflection with a certain precision, as we
discuss in Section 5.1, we expand the analysis such that all references include
a creation point consisting of the method and program counter where the
corresponding object was created: ObjRef = Class×Method×PC. The same
applies for arrays which were initially only represented by the array type:
ArrRef = ArrayType×Method×PC. This representation is known as textual
object graphs [VHU92].

For readability, we provide an abstract domain for exception refer-
ences: ExcRef = ObjRef. Values from the above domains are written
(ObjRef (x,m, pc)), (ArrRef (x,m, pc)), and (ExcRef (x,m, pc)).

As in the semantic domains, primitive values are represented as integers:

P̂rim = P(Prim) = P(Prim) = P(Z).

Addresses are represented as in the semantic domains, with the addition
of a special program counter value to represent the end of control flow for
methods: Addr = Addr + (Method× {END}). The entry and exit points of a
method are then pc = 0 and pc = END, respectively.

We use R̂(a), where R̂ ∈ ̂LocalReg and a ∈ Addr, as a function mapping

registers to abstract values: ̂LocalReg = Addr → (Register ∪ {END}) → V̂al.
The use of Addr means that the analysis is flow-sensitive within methods.
To pass return values to the retval register we use the pseudo-register
END such that for m ∈ Method, the expression R̂(m,END) is notation for
R̂(m,END)(END).

In the analysis, judgements specify the constraints that the presence of an
instruction in a given location in an app impose on the analysis result using

the relation v, as we demonstrate in Section 4.2. For ̂LocalReg, we use the
notation R̂(a1) v R̂(a2) to specify that we copy all register values from one
address to another, i.e., as a short-hand for:

R̂(a1) v R̂(a2) iff ∀r ∈ dom(R̂(a1)) : R̂(a1)(r) v R̂(a2)(r)

This means that the least upper bound of the old and new value is used as
the new value, and equivalently, since we are working with sets, that the
union of the sets of possible values is used as the new set of possible values
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in the registers. Between any two access functions, we subscript the relation
with a set of input values to exclude from the comparison:

F1 vX F2 iff ∀a ∈ dom(F1) \X : F1(a) v F2(a)

The heap is separated into the static and dynamic heap as in the semantics

where the static heap maps fields to values: ̂StaticHeap = Field → V̂al,
and the dynamic heap maps references — now with textual object graph

representation — to objects and arrays: Ĥeap = Ref → (Ôbject+Ârray).

The state of an object is the state of its (instance) fields: Ôbject = Field →
V̂al. Array values are kept as an unordered set, thus we ignore the length

and structure: Ârray = V̂al. Unlike in the semantics, the class and array
type is not necessary in these domains since they are already present in the
references.

We use an exception cache to track exceptions that are not handled locally in
a method, such that the previous method in the call stack can try to handle

it: ̂ExcCache = Method→ P(ExcRef).

In the flow logic judgements we use an abstract representation function to
map concrete semantic values into their corresponding abstract representa-
tions. The function maps the value to a singleton set: β(c) = {c}.

Finally, the domain for the control flow analysis consists of the above domains
as follows:

Ânalysis = ̂StaticHeap× Ĥeap× ̂LocalReg × ̂ExcCache

An analysis result (from this domain) is acceptable when it respects the flow
logic judgements. The result > ̂Analysis is always acceptable but not useful, so
the interesting solutions are the ones that are as precise as possible.

4.2 Examples of Flow Logic Judgements

In this section we briefly summarize a selection of judgements from [WK12]
and present updated judgements for those that now use the textual object
graph references. For the full set of judgements, see Appendix E.
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4.2.1 Imperative Core

The semantics for the move instruction state that the content of a source
register is copied to a destination register. In the analysis, this is expressed
by the content of the source register being available in the destination register
at the next program point:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): move v1 v2
iff R̂(m, pc)(v2) v R̂(m, pc+ 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc+ 1)

The destination register is the only one being changed, and thus the content of
all other registers is copied into the next program point without any changes.
There are no changes on the static or dynamic heap, or the exception cache
since these do not depend on the instruction address.

A safe over-approximation for conditional branching is to branch to all pos-
sible destinations. For the if instruction, this means that we assume both
branches are taken. In the analysis, the content of all registers is trans-
ferred to both the next program point and the program point pc′ that the if

instruction would jump to:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): if op v1 v2 pc′

iff R̂(m, pc) v R̂(m, pc+ 1)

R̂(m, pc) v R̂(m, pc′)

4.2.2 Method Invocation

Method invocation in Dalvik uses one of the invoke instructions. The flow
logic judgement for invoke-virtual specifies that: For each object refer-
ence in the first argument register (the object, the method is invoked on), a
method matching the signature argument, meth, from the instruction must
be resolved using dynamic dispatch from the class in the reference. All argu-
ments for the invoked method, i.e., the content of registers v1 to vn, must be
present at program counter 0 in the invoked method. If the invoked method
returns a value, this value must also be present in the retval register at
the next program point in the invoking method. The invoking method also
tries to handle any unhandled exception from the invoked method using the
HANDLE predicate as discussed below. Finally, as an example of a runtime
exception, a NullPointerException is tried:
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(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-virtual v1 . . . vn meth

iff ∀(ObjRef (cl ,mt, pct)) ∈ R̂(m, pc)(v1):
m′ = resolveMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) v R̂(m′, 0)(m′.numLocals − 1 + i)

m′.returnType 6= void ⇒ R̂(m′,END) v R̂(m, pc+ 1)(retval)

∀(ExcRef (cle,me, pce)) ∈ Ê(m′):
HANDLE(R̂,Ê)((ExcRef (cle,me, pce)), (m, pc))

R̂(m, pc) v{retval} R̂(m, pc+ 1)

HANDLE(R̂,Ê)((ExcRef (NullPointerException,m, pc)), (m, pc))

Since we take all branches in the analysis, the instruction succeeds while
simultaneously throwing exceptions. We use the following auxiliary predicate
in the flow logic judgements when an exception is thrown:

HANDLE(R̂,Ê)((ExcRef (cle,me, pce)), (m, pc)) ≡
findHandler(m, pc, cle) = pc′ 6= ⊥ ⇒
{ExcRef (cle,me, pce)} ⊆ R̂(m, pc′)(retval)

R̂(m, pc) v{retval} R̂(m, pc′)

findHandler(m, pc, cle) = ⊥ ⇒
{ExcRef (cle,me, pce)} ⊆ Ê(m)

The predicate findHandler is used to determine if a local handler is present
in the method. If there is a local handler, a reference to the exception is
put into the retval register at the program point for the found handler. If
no local handler is found, the exception cache is used to store the exception
reference such that the previous method in the call stack may try to handle
it as shown in the invoke-virtual judgement.

4.2.3 Instantiation

In [WK12], object references were simply classes, and the new-instance

instruction was specified as:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): new-instance v cl

iff {cl} v R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

To improve the precision of the analysis, we use the textual object graph
representation in the updated ObjRef domain such that the address of the
new-instance instruction is now part of the object reference:
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(Ŝ, Ĥ, R̂, Ê) |= (m, pc): new-instance v cl

iff {ObjRef (cl ,m, pc)} ⊆ R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

Semantically, the instruction allocates room for the object and updates the
destination register with its reference. In the analysis we use the statically
known information about its creation point (method and program counter)
to identify the new object, and therefore have no need to update the heap
until any information is actually put there.

As explained in Chapter 3, the const-string instruction is a specialized
instruction that creates a java/lang/String instance. We model this in the
analysis, and update the heap using the creation point, class and field with
the abstract representation of the string:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): const-string v s

iff β(s) v Ĥ(ObjRef (java/lang/String,m, pc))(value)

{ObjRef (java/lang/String,m, pc)} ⊆ R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

A reference to the updated location on the heap is put into the destina-
tion register, and all other registers are transferred unchanged into the next
program point.

The instruction const-class is similar, as it creates a java/lang/String

and a java/lang/Class reference. The fields value and name are updated
with the name of the given class and the reference to the string, respec-
tively:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): const-class v cl

iff β(cl .name) v Ĥ(ObjRef java/lang/String,m, pc))(value)

{ObjRef (java/lang/String,m, pc)} ⊆ Ĥ(ObjRef (java/lang/Class,m, pc))(name)

{ObjRef (java/lang/Class,m, pc)} ⊆ R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

4.3 Concurrency

There are two Dalvik instructions related to concurrency: monitor-enter

and monitor-exit, and as described in Chapter 2 they are used in most
apps. The instructions are generated by the compiler when the Java key-
word synchronized is used. Threads are started using Java API calls, and
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volatile is set as an AccessFlag on fields that are declared with the Java
keyword volatile1. For Java the execution order of instructions is defined
by the Java Memory Model, JSR-133 [Cor12]. The memory model formal-
izes how shared variables should be read and written, and how instructions
can be re-ordered to execute as-if-serially when they are concurrent [MG04].
According to unofficial statements [Kry12], Dalvik tries to comply with the
JSR-133 memory model, though there should be cases where it does not on
versions prior to Android 3.0.

However, with the analysis specified in this project, we conjecture that the
analysis is sound even for multi-threaded apps. The details of the memory
model are irrelevant since all possible values are present on the heap (which is
the only thing shared between threads) at all points in the program, regard-
less of instruction and method order. If the analysis was expanded to support
the relevant Dalvik instructions, Java API methods and the volatile access
flag, it might however be possible to improve the precision of the analy-
sis.

1A volatile Java field should never be cached as the variable is meant to be modified
by more than one thread.
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Dynamic Dalvik

The study described in Chapter 2 uncovered two commonly used dynamic
features in Android: Reflection and Javascript interfaces. In this chapter we
describe how these features are used in Android apps and show how they
can be handled by a static analysis by specifying operational semantics and
expanding the control flow analysis to include the central parts of the Java
reflection API and Javascript interfaces.

5.1 Reflection

Reflection allows a program to access class information at runtime, and use
this information to create new objects, invoke methods or otherwise change
the control flow of the program. When reflection is used, the types involved
are usually not known statically. Instead, they are retrieved dynamically
from strings. The strings can come from sources such as user input, files
included with the app, the Internet, or, in some cases, constant strings in the
program. We found that several of the apps in our data set specify constant
strings in the program.

The most used method from the Java reflection API is Method.invoke().
It is an instance method on the Method class used to invoke dynamically
resolved methods. An example can be seen in Listing 5.1 where the method
bar(int) on the class pkg.examples.Foo is invoked on an instance of the
class with the argument 3.
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1 Class<?> clazz = Class.forName("pkg.examples.Foo");

2 Method method = clazz.getMethod("bar", int.class);

3 Integer result = (Integer) method.invoke(clazz.newInstance(), 3);

Listing 5.1: A method invoked through reflection in Java.

A Method object can be retrieved using the instance method getMethod()

on the Java standard class Class. The instance of Class does not have
to represent a class that implements the method since it is resolved with
dynamic dispatch like normal method calls. In Listing 5.1, the Class object
is retrieved using the static method Class.forName() that, given a fully
qualified class name, returns a reference to a Class instance for the specified
class.

Another way to obtain a Class object is through the Dalvik in-
struction const-class. It is generated when the static field class

which is found on all Java classes is accessed. An alternative to
Class.forName("pkg.examples.Foo") at line 1 in Listing 5.1 would there-
fore be to use Foo.class, presuming that the example code is located in the
same package as the Foo class and that the class can be found by the Java
compiler.

The Method objects are mainly retrieved using the methods getMethod() and
getMethods(). The latter returns an array of all public method declarations
on a class while the former returns a single object that is found by specifying
the name and parameter types of the desired method declaration. The meth-
ods getMethod() and getMethods() only find public method declarations
and they both find the method declaration objects by traversing through the
class hierarchy, starting at the class represented by the Class object and
searching upwards through superclasses and interfaces. Developers can also
use the getDeclaredMethod() and getDeclaredMethods() methods which
only look in the specified class but also return private methods.

Once a Method object has been obtained, it can be used to retrieve infor-
mation about the method declaration, for example access modifiers, name,
and the checked exceptions it can throw. Accessing these requires no addi-
tional information beside the information that is known statically from the
method declaration. To invoke the method, an instance of the class or sub-
class hereof is required, except for static methods. The receiver object can be
any Java object created using the regular Java new statement or through the
newInstance() method on a Class object. Beside creating a new instance,
the newInstance() method calls the parameterless constructor for the class.
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To use another constructor, an instance of the Constructor class from the
reflection API must be used.

5.1.1 Usage Patterns

The use-cases for reflection vary from app to app, and Android developers
use it for many different things. However, we have observed some patterns
in usage, most of which we have found through manual inspection of the
bytecode.

Hidden API methods are invoked. Certain features in Android is deliber-
ately hidden by the Android developers, such that they are not present
in the JAR file for the Android API that app developers use when com-
piling their Android apps. An example of this is found in the Bluetooth
features on Android, most of which were hidden in the early releases
of Android due to lack of support on some devices. Developers tend
to use these features anyway, and use reflection to do so instead of
precompiling their own JAR file for the Android API.

Private API methods and fields are accessed by bypassing access mod-
ifiers. Several features of the Android platform are placed in private
methods and fields, such as the ability to create a list of text messages
from raw SMS data.

Backward-compatibility as new versions of Android are often released
with new features, developers tend to use reflection to check if certain
methods/features exist and call these only when they do. This pattern
is even encouraged by Google in the Android documentation [And11a].

JSON and XML is generated and parsed with the use of reflection. Some
apps use JSON and XML that contain information about their Java
objects, and through reflection generation and parsing can be auto-
mated.

Libraries for Android apps are widely available on the Internet, and some
of these use reflection. In many apps that use reflection, it is only used
by the included libraries.

An analysis of reflection in standard Java has been done in [LWL05] where
they found some of the same patterns in large open source projects from
SourceForge [Sou12], such as object serialization and portability/backward-
compatibility. However, they found that reflection was mostly used to create
new objects without invoking new methods on them. We found that in
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Android, invoking methods is among the most common uses of reflection.
Our findings do however comply with the ones described in [FCH+11] for
Android.

5.1.2 Assumptions

Static analysis of the reflection API is not possible in all cases, e.g. if a class
being used is not known. Therefore, we presume the following requirements
are met:

• All classes used through reflection are known statically, such that its
components can be analyzed. In other words, we assume that dynamic
class loading is not used.

• The program does not use a non-default class loader, as this could
change the behaviour of Class.forName() and similar methods. As
mentioned in Chapter 2, class loaders is used in 13.1% of the apps
to either load or define new classes. This raised other problems with
regards to static analysis, and they were considered out of scope for
this project.

• The strings used to obtain Method and Class objects used for reflection
can be determined statically. This presumption only holds for some of
the studied apps. A preliminary number from [KWOH12] showed that
18.9% of the studied apps only use locally defined constant strings for
the methods Class.forName() and Class.getMethod().

This last result was based on an intra-procedural analysis of const-string
instructions, not the (limited) data flow capabilities of our control flow
analysis. But even with the inter-procedural analysis, improving the num-
ber requires the ability to track strings across collection APIs such as
java/util/ArrayList and follow string manipulation such as that of the
java/lang/StringBuilder class. For the latter, existing string analy-
ses [CMS03, KGG+09, SAH+] may prove useful.

The operational semantics specified so far all represent single Dalvik instruc-
tions. We now change focus and specify operational semantics and flow logic
judgements to represent Java API method calls. One way to do this would be
to specify the relevant Dalvik instructions that each API method consists of.
However, our goal is not to specify the semantics precisely, but to use the se-
mantics as a means to specify an analysis that is able to handle the reflection
calls. Therefore, we have chosen to specify the operational semantics for the
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API methods as if they each were single, although advanced, Dalvik instruc-
tions. We try to keep the semantics and analysis as close to the specification
and implementation as possible, but have left out some details when they
are not necessary for the analysis. An example of this is exceptions: Most of
the reflection API calls can throw exceptions, but we only describe these in
rare cases. Furthermore, when we create objects, we only specify the fields
necessary for the analysis, and do not guarantee that the implementation
does not use more fields to track information.

The operational semantics and flow logic judgements can also be found in
Appendix F.

5.1.3 Class Objects

When the Java method Class.forName(string) is used, it generates the
Dalvik instruction invoke-static with the signature

Ljava/lang/Class;->forName(Ljava/lang/String;)Ljava/lang/Class;

but for readability in the semantics and judgements, we identify such spe-
cialized calls using meth = java/lang/Class->forName.

The instruction takes one argument: a reference to a string that identifies
the class or interface one wants to reference. On the heap a new Class object
is allocated and the field name is updated to point to the string reference of
the class name:

m.instructionAt(pc) = invoke-static v1 meth
meth = java/lang/Class->forName loc = R(v1) o = H(loc)

o.class � java/lang/String o.field(value) ∈ ClassName
(H ′, loccl) = newObject(H, java/lang/Class) ocl = H ′(loccl)

o′cl = ocl [field 7→ ocl .field[name 7→ loc]]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′[loccl 7→ o′cl ], 〈m, pc+ 1, R[retval 7→ loccl ]〉 :: SF 〉

For the analysis, register v1 may contain several values but we can safely
ignore anything other than strings, as the API method will only accept a
string as an argument. Every string reference in v1 is transferred to a new
location on the heap, into the field name on the object identified by the
type java/lang/Class, the current method and program counter. The same
Class reference is placed in the retval register:
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(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-static v1 meth
iff meth = java/lang/Class->forName

∀(ObjRef (java/lang/String,m′, pc′)) ∈ R̂(v1):
{ObjRef (java/lang/String,m′, pc′)} ⊆
Ĥ(ObjRef (java/lang/Class,m, pc))(name)

{ObjRef (java/lang/Class,m, pc)} ⊆ R̂(m, pc+ 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc+ 1)

5.1.4 Method Objects

A Method object represents a method declaration, i.e., an element in the
MethodDeclaration domain. This means that Class.getMethod() finds
a method declaration resolved from the class or interface represented by
the Class object. For the semantics, we use two auxiliary functions:
resolvePublicMethodDeclaration and newMethodObject. The first takes the
value from the class name String from the Class object, the value from the
method name String referenced in argument v2 and argument types in the
array referenced in v3. The function searches through the class and inter-
face hierarchy for a matching MethodDeclaration. The function can only find
a method that is defined as public and is not a constructor. The function
newMethodObject is given the method declaration and the existing heap and
returns the updated heap and the location of the Method object where the
relevant fields have been initialized. In fact it creates three new objects: a
Method, a Class, and a String, because the field declaringClass on the
Method object references a Class where the field name references a String

with the actual class or interface name:

m.instructionAt(pc) = invoke-virtual v1 v2 v3 meth
meth = java/lang/Class->getMethod

clnameo = H(R(v1)).field(name) clname = H(clnameo).field(value)
mname = H(R(v2)).field(value) types = H(R(v3)).field(value)

m = resolvePublicMethodDeclaration(clname,mname, types)
m 6= ⊥ (H ′, locm) = newMethodObject(H,m)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[retval 7→ locm]〉 :: SF 〉

The search order of the resolvePublicMethodDeclaration function is defined
as: The current class, the superclasses of the current class and finally the
superinterface hierarchy of the current class. The interface hierarchy of the
superclasses are not searched, despite that methods declared in this part of
the hierarchy would be found if reflection was not used. This behaviour is
consistent with the Java documentation [Ora12] and the behaviour in An-
droid 2.3. However, the search order has been changed in Android 4.0 to
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be consistent with the expected behaviour where interfaces of superclasses
are searched as well. This change in behaviour is undocumented and we
have reported this as a bug [GC12] that is yet to be resolved. Regardless of
search order, the function is able to find more than one applicable method
declaration due to covariant return types. In such cases, the one with the
most specific return type is returned, and if a single return type is not more
specific than the others, an arbitrary method declaration is returned.

In the analysis, we define mref for readability to be the reference to the new
Method object. For all references to Class objects in v1, there are one or
more class names referenced by a String on the heap in the field name. The
set of class names is saved as clnames and for each of the references, String
references from v2 are found and the string values (method names) are saved
as mnames . The set of method names is also put in the field name on the heap
at mref . Furthermore, we use resolvePublicMethodDeclarationsFromNames
to do a search through the class and interface hierarchy for valid method dec-
larations, similar to the semantic resolvePublicMethodDeclaration, but for
sets of class and method names. However, it does not take argument types
into account since we do not model arrays precisely enough to do a reason-
able comparison of the argument types. For each of the resulting method
declarations (m ′): the class name of the method declaration is created as
a String, the string reference is put into a new Class object and a refer-
ence to the Class object is put in the field declaringClass for mref on
the heap. Finally, a reference to the method object is present in the retval

register:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-virtual v1 v2 v3 meth
iff meth = java/lang/Class->getMethod

mref = (ObjRef (java/lang/reflect/Method,m, pc))

∀(ObjRef (java/lang/Class,mc, pcc)) ∈ R̂(m, pc)(v1):
∀(ObjRef (java/lang/String,mo, pco)) ∈

Ĥ(ObjRef (java/lang/Class,mc, pcc))(name):

clnames = Ĥ(ObjRef (java/lang/String,mo, pco))(value)

∀(ObjRef (java/lang/String,ms, pcs)) ∈ R̂(m, pc)(v2):

{ObjRef (java/lang/String,ms, pcs)} ⊆ Ĥ(mref )(name)

mnames = Ĥ(ObjRef (java/lang/String,ms, pcs))(value)
∀m ′ ∈ resolvePublicMethodDeclarationsFromNames(mnames, clnames):

β(m′.class.name) v Ĥ(ObjRef java/lang/String,m, pc)(value)
{ObjRef (java/lang/String,m, pc)} ⊆

Ĥ(ObjRef (java/lang/Class,m, pc))(name)

{ObjRef (java/lang/Class,m, pc)} ⊆ Ĥ(mref )(declaringClass)

{mref } ⊆ R̂(m, pc+ 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc+ 1)
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5.1.5 Instantiation

To instantiate new objects through reflection, the API method
Class.newInstance() is used. It requires a Class object representing the
class one wants to create a new instance of, and the class must be a regular
class, not an interface, abstract class, primitive type or array class. In such
cases, an exception is thrown (but this is left out of the semantics and anal-
ysis for simplicity). The Class object has a reference to a String with the
class name in the name field, and we use the auxiliary function lookupClass
to find the corresponding class in the semantic Class domain. Next, the new
instance is created on the heap using the same function newObject as in the
regular new-instance instruction. Unlike the regular new-instance instruc-
tion, Class.newInstance() also calls the default constructor for the class
being instantiated. We use an auxiliary function lookupDefaultConstructor
to find this constructor, and if none exists the function will return ⊥ and
an exception should be thrown. The constructor is given registers where the
argument register has been initialized to a reference to the newly allocated
object. Control is transferred to the constructor by adding a new stack frame,
just like regular method invocation, but a reference to the newly allocated
object is also put into the retval register on the stack frame for the current
method. A constructor cannot return a value, and therefore this reference
cannot be replaced before control is returned to the current method:

m.instructionAt(pc) = invoke-virtual v1 meth
meth = java/lang/Class->newInstance

loccl = R(v1) 6= null ocl = H(loccl)
on = H(ocl .field(name)) cl = lookupClass(on.field(value))

(H ′, loc) = newObject(H, cl) m′ = lookupDefaultConstructor(cl) 6= ⊥
R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,m′.numLocals 7→ H ′(loc)]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m′, 0, R′〉 :: 〈m, pc+ 1, R[retval 7→ loc]〉 :: SF 〉

The flow logic judgement specifies that for all the Class references in register
v1, String references are on the heap to specify the class name, and for each
of these class names (clname) the semantic class must be found using the
function lookupClass. A reference for each of these classes is put into the
retval register for the current method, a default constructor is found and
the new object reference is placed as an argument to the constructor:
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(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-virtual v1 meth
iff meth = java/lang/Class->newInstance

∀(ObjRef (java/lang/Class,m′, pc′)) ∈ R̂(v1):
∀(ObjRef (java/lang/String,ms, pcs)) ∈

Ĥ(ObjRef (java/lang/Class,m′, pc′))(name):

∀clname ∈ Ĥ(ObjRef (java/lang/String,ms, pcs))(value):
cl = lookupClass(clname)

{ObjRef (cl ,m, pc)} ⊆ R̂(m, pc+ 1)(retval)
m′ = lookupDefaultConstructor(cl)

{ObjRef (cl ,m, pc)} ⊆ R̂(m′, 0)(m′.numLocals)

R̂(m, pc) v{retval} R̂(m, pc+ 1)

5.1.6 Method Invocation

Once a Method object is created it can be used to invoke the method it
represents. The API method Method.invoke() takes two arguments beside
the Method object itself: An object reference (v2) for the receiver object
on which the method should be invoked, and an array of arguments (v3).
The receiver object should be null if the method is static, and the method
implementation will then be resolved from the declaring class in the Method

object. We do not formalize the invocation on static methods as this is a
straightforward modification of the case with a receiver object. We use the
auxiliary function methodSignature to extract information from a Method

object to create a corresponding signature in the semantic MethodSignature
domain. The actual method to invoke is resolved using resolveMethod, just
like in the regular invoke-virtual instruction:

m.instructionAt(pc) = invoke-virtual v1 v2 v3 meth
meth = java/lang/reflect/Method->invoke R(v1) = loc1 6= null

o1 = H(loc1) o1.class � java/lang/reflect/Method

meth ′ = methodSignature(H, o1) R(v2) = loc2 6= null o2 = H(loc2)
R(v3) = loc3 a = H(loc3) ∈ Array m′ = resolveMethod(meth ′, o2.class)
a′ = unboxArgs(a,m′.argTypes, H) bf = getBoxingFrame(m′.returnType)

R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,
m′.numLocals 7→ a′.value(0), . . . ,m′.numLocals + a′.length− 1 7→ a′.value(a′.length− 1)]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: bf :: 〈m, pc,R〉 :: SF 〉

Before the arguments are transferred to the resolved method registers they
may have to be unboxed: The API method receives the arguments in an array
with elements of type Object (Java varargs). This means that if the in-
voked method has any formal arguments of primitive types, the API method
unboxes the primitive values that were boxed before the call occurred. The
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primitive values are extracted from the box object based on the argument
types of the resolved method. We use an auxiliary function, unboxArgs,
to unbox all the relevant arguments and return an array with the correctly
typed values. These values are then transferred into the relevant registers
that are put into a new stack frame along with the method to invoke. The
unboxed array, a′, is longer than a if any of the unboxed values are of wide
data types, i.e., long or double.

The API method always returns a value of type Object, and if the invoked
method returns a primitive value it must therefore be boxed by the API
method. The return value is not available until the invoked method returns,
and therefore we cannot yet box the value. Instead, we add an additional
stack frame with a method to be run after the invoked method. We use
an auxiliary function getBoxingFrame to generate this frame. The function
takes the return type of the invoked method as an argument, such that the
boxing method is able to determine if the return value should be boxed, and
what class it should be boxed in. If boxing is to occur, it boxes the return
value from the retval register and replaces it with a reference to the boxed
value.

In the analysis, for all the Method object references in v1, we use the aux-
iliary function methodSignatures to extract and create all possible method
signatures that correspond with the information on the heap for the given
Method object. All these method signatures must be resolved on all the ob-
ject references for receiver objects in v2. We do not store the order of the
arguments in the array referenced in v3, and therefore we cannot determine
which of the arguments that must be unboxed. Instead, we transfer all values
as they were, as well as unbox all arguments that are object references, if
the class (clo) is a class that can be unboxed. The latter is determined by
the auxiliary function isBoxClass. Depending on the return type of the in-
voked method, the return value of Method.invoke() is either null (if void),
unchanged (if it is already of a reference type) or boxed (if it is of a prim-
itive type). The function primToBoxClass translates a return type to the
corresponding boxing class, e.g. int to Integer, and the return value of
the method is then boxed by putting the value in the field value on the
heap for the found class and the current method and program counter. In
addition, the same object reference is put in the retval register for the next
program counter in the current method. Finally, we handle any exceptions
that are referenced in the exception cache since the invoked method might
have thrown an exception:
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(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-virtual v1 v2 v3 meth
iff meth = java/lang/reflect/Method->invoke

∀(ObjRef (java/lang/reflect/Method,mm, pcm)) ∈ R̂(m, pc)(v1):

∀meth ′ ∈ methodSignatures(Ĥ,ObjRef (java/lang/reflect/Method,mm, pcm)):

∀(ObjRef (clr,mr, pcr)) ∈ R̂(m, pc)(v2):
m′ = resolveMethod(meth ′, clr)

{ObjRef (clr,mr, pcr)} ⊆ R̂(m′, 0)(m′.numLocals)
∀1 ≤ i ≤ arity(meth ′):

∀(ArrRef (a,ma, pca)) ∈ R̂(m, pc)(v3):

Ĥ(ArrRef (a,ma, pca)) v R̂(m′, 0)(m′.numLocals + i)

∀(ObjRef (clo,mo, pco)) ∈ Ĥ(ArrRef (a,ma, pca)):
isBoxClass(clo) ⇒
Ĥ(ObjRef (clo,mo, pco))(value) v R̂(m′, 0)(m′.numLocals + i)

m′.returnType = void ⇒ β(null) v R̂(m, pc+ 1)(retval)

m′.returnType ∈ RefType ⇒ R̂(m′,END) v R̂(m, pc+ 1)(retval)
m′.returnType ∈ PrimType ⇒
clb = primToBoxClass(m′.returnType)

R̂(m′,END) v Ĥ(ObjRef (clb,m, pc))(value)

{ObjRef (clb,m, pc)} ⊆ R̂(m, pc+ 1)(retval)

∀(ExcRef (cle,me, pce)) ∈ Ê(m′):
HANDLE(R̂,Ê)((ExcRef (cle,me, pce)), (m, pc))

R̂(m, pc) v{retval} R̂(m, pc+ 1)

5.2 Javascript Interfaces

Java instance methods can be exposed and invoked from Javascript through
Javascript interfaces. This feature is a part of WebKit [Goo12b], and, as
described in Chapter 2, it is used in 39% of the apps in our data set. We
found the two main uses to be in advertisement libraries and small apps
where the main functionality is provided by a webpage. The Java object’s
methods are exposed to an in-app custom browser using the API method
android/webkit/WebView->addJavascriptInterface(). In the API doc-
umentation, a warning states that it can be a dangerous security issue, and
it should not be used unless all of the HTML in the loaded webpage is con-
trolled by the developer. We found a violation of this recommendation: An
app that gave access to send text messages through the Javascript inter-
face allowed pages from eBay [eI12] to be loaded through links from its own
webpage.

As the feature is widely used we now demonstrate how a call to the method
can be handled in our static analysis. We do not specify operational semantics
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for the method, as this would require a formalization of how Dalvik and
Android exposes the individual Java objects through a WebView, and we
argue that a sound analysis can be performed, simply by looking at what
happens from a Dalvik point of view.

The API method receives three arguments: A WebView instance, the Object

to expose and a String with a name to identify the object in Javascript.
The name and the WebView instance are irrelevant for our analysis since
Javascript cannot affect them. On the exposed Object it is only possible to
access public methods but not constructors or methods that take reference
types as arguments except for strings.

The analysis is safe because we assume that every method reachable through
the interface can be called with any argument. This includes not just the
methods on the Javascript interface class but also methods inherited from
its superclasses. For simplicity, we assume that all virtual methods on the
interface object are called independently of reference types in their argument
list. For all the methods declared in the ancestry of the interface object’s
class (cl i), we use the resolveMethod function to find only the ones that can
be resolved from this class. For these methods (m ′) we say that the value
of all the arguments is >, except for the first argument which is the original
reference given in v2:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-virtual v1 v2 v3 meth
iff meth = android/webkit/WebView->addJavascriptInterface

∀(ObjRef (cl i,mi, pci)) ∈ R̂(m, pc)(v2):
∀cl ′ ∈ cl i.super* ∪ {cl i} :
∀m ′ ∈

{
m′ ∈ cl ′.methods | m′.kind = virtual

}
:

m′ = resolveMethod(m′, cl i) ⇒
{ObjRef (cl i,mi, pci)} ⊆ R̂(m′, 0)(m′.numLocals)
∀1 ≤ i < arity(m′):

> v R̂(m′, 0)(m′.numLocals + i)

R̂(m, pc) v R̂(m, pc+ 1)

where super∗ is the set of superclasses found by traversing the class hierarchy
transitively:

super∗(⊥) = ∅
super∗(cl) = {cl .super} ∪ (cl .super).super∗

In the flow judgement we use > but in practice, the only types that can be
received from Javascript are primitive types and strings.
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Prototype

The control flow analysis specified as flow logic judgements is itself enough
to analyze Dalvik bytecode apps, but without some form of automation, the
analysis would be a lengthy process. Our prototype translates Android apps
to constraints expressed using Prolog clauses based on the flow logic. It
combines several existing tools with our Python parser and constraint gener-
ator as shown in Figure 6.1. First, apktool extracts the bytecode content of
an app and, leveraging another existing tool, baksmali, translates the byte-
code to smali, a human readable format akin to assembly languages with
instruction mnemonics, inlined constants and various annotations. We feed
this output to our parser which builds lists of classes, methods, instructions,
etc., and a tree representing the type hierarchy in the app. Our constraint
generator traverses the lists and emits Prolog rules for method resolution,
exception handlers, entry points, etc., as well as rules for each instance of
each Dalvik instruction in the program. The Prolog program can then be
queried for any information that the analysis specifies. This can for example
happen interactively or as part of a more specific, programmed analysis. As
an example of the latter, we generate call graphs with a special query and
further process the output to visualize the call graph of an app.

The source code for the prototype is available at:
https://bitbucket.org/erw/dalvik-bytecode-analysis-tool

Section 6.1 explains the smali format and our parser, Section 6.2 explains
the background of using Prolog as the constraint solver, and Sections 6.3
through 6.6 detail the constraint generator itself. Section 6.7 discusses run-
ning the analysis on real apps.
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Figure 6.1: Diagram of the prototype of the analysis tool. Rectangles repre-
sent data processors and ellipses represent data.
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6.1 Smali

Smali is both the name of a mnemonic language for Dalvik bytecode and
an assembler for this language [jes11]. The corresponding disassembler is
named baksmali, and we use it to disassemble DEX files into source code
that our parser can process. We use it as part of apktool [Bru11] which is
another open-source utility that streamlines the process of assembling and
disassembling complete android apps. Baksmali creates a smali file for each
class in the app. The structure of such a file is:

1 .class modifiers... Lsome/package/SomeClass;

2 .super Lsome/package/SuperClass;

3 .implements Lsome/package/ISomeInterface;

4

5 .method modifiers... methodName(Larg/types;)Lreturn/type;

6 .locals ...

7 instruction ...

8 instruction ...

9 instruction ...

10 ...

11 .end method

12

13 .method ...

14 ...

15 .end method

16

17 ...

Nested classes in Java are renamed with a $ sign in the class name for each
nesting level so no classes contain within them other classes. Smali contains
other structures such as switch tables and array data but these are not nested
either. For each file, our parser records the class metadata and passes over
the instructions while keeping track of the method they appear in and the
metadata of methods including its declaration information and the number
of registers used.

6.2 Prolog, Tabling and Termination

A part of the prototype is implemented in XSB Prolog [XSB12], a variant
of the logic programming language Prolog [Dan12]. Logic programming is a
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way to express mathematical logic, and it is easy to express the flow logic
judgements with it. A Prolog program consists of rules and facts that specify
relations. A program can be queried to determine if a relation is true, or for
which values are able to make a relation true.

The data structures in Prolog are called terms. They can all be categorized as
one of four types: atoms, numbers, variables or compound terms (composed
of a functor and a list of arguments).

Listing 6.1 shows a Prolog program, where a small family tree has been
encoded: peter and sarah are parents to james, and sophia is the child of
james and catherine.

1 parent(peter, james).

2 parent(sarah, james).

3 parent(james, sophia).

4 parent(catherine, sophia).

5 ancestor(A, C) :- parent(A, C).

6 ancestor(A, C) :- parent(A, X), ancestor(X, C).

Listing 6.1: Prolog example.

The parent relation is specified using the facts in line 1–4. The names
peter, james, sarah, catherine and sophia are atoms, note that they must
start with a lowercase letter, or alternatively be surrounded by singlequotes.
We have also created a relation called ancestor in line 5–6 to specify when
A is an ancestor to C. A and C are variables (starts with an uppercase letter).
The relation is specified as two rules: At line 5, the right side of :- (called
the rule body) specifies that the left side (rule head) is true if A is C’s parent,
that is, if a relationship exists such that parent(A, C). The rule body in line
6 states that the rule head is true, only if there exists a relation where A is
a parent to X, who must be an ancestor of C. The comma between the two
goals indicate that they both must be true.

The program can be queried to determine if something is true, e.g.

parent(peter, james).

parent(peter, sarah).

would yield “yes” and “no”, respectively. Variables can be used in the queries,
such that

parent(P, james).

would yield both P = peter and P = sarah. Furthermore, the rules can be
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queried such that

ancestor(Y, sophia).

would yield james, catherine, peter, and sarah as possible values of Y.

Prolog queries are evaluated by a Prolog engine, and the evaluation of regular
Prolog uses a depth-first search through trees built from the facts and rules.
However, if rules are left-recursive it will result in programs never terminat-
ing. For example, if the recursive rule of the ancestor relation was specified
as

ancestor(A, C) :- ancestor(X, C), parent(A, X).

regular Prolog implementations will recurse until they run out of stack space.

We use XSB Prolog because it is able to use a different evaluation strat-
egy called SLG that involves tabling (memoization). This results in faster
evaluation, and ensures termination of our program analysis, even though
we specify rules which are left-recursive (back-edges in the program). For
a more detailed description of XSB Prolog and its evaluation strategy, refer
to [SW+11b] and [SW+11a].

6.3 Examples of Instructions

Here we demonstrate the conversion of flow logic judgements to Prolog source
code. For example, the judgement for the const instruction is:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): const v c

iff β(c) v R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

For a const instruction at pc 48 in method m1 in some app, these two Prolog
clauses will be generated:

1 % 48: const v5, 0x1

2 hatR(m1, 49, 5, 0x1).

3 hatR(m1, 49, V, Y) :-

4 hatR(m1, 48, V, Y),

5 V \= 5.

As can be seen, this conversion and instantiation is fairly straightforward.
The Python expression that generates the above looks as follows:
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1 clause(hatR(address.next(), reg_num(address, dest), value))

2 + transfer_exclude(address, reg_num(address, dest))

where dest and value are the arguments to the instruction as strings, and
address is an object representing the current address. The Python func-
tion hatR() inserts an address, a register number, and a value into a Pro-
log hatR/4 expression. The function reg num() converts a register name
(e.g., v5 or p2) to a register number in the context of an address (5 and
address.method.num locals + 2). The function clause() simply joins its
argument Prolog expressions into a clause with the first argument being the
head of the rule, or simply a fact if it is the sole argument. The function
transfer exclude() itself calls clause() and hatR() to generate a rule to
transfer all registers except one to the next program point.

An example of a slightly more advanced instruction is iput which sets an
instance field to a given value on a given object, provided the object’s class
matches the one that is part of the (fully qualified) field name. Its flow logic
judgement is:

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): iput v1 v2 fld

iff ∀(ObjRef (cl ,m′, pc′)) ∈ R̂(m, pc)(v2):
cl � fld .class ⇒
R̂(m, pc)(v1) v Ĥ(ObjRef (cl ,m′, pc′))(fld)

R̂(m, pc) v R̂(m, pc+ 1)

As an instantiation of the Prolog code for iput, we show one from the method
Lru/watabou/moon3d/MoonView;-><init>(Landroid/content/Context;)V

which we abbrivate to m2:

1 % 3: iput v1, p0, Lru/watabou/moon3d/MoonView;->targetSunAngle:F

2 hatH((CL, CLAddrMID, CLAddrPC), ’targetSunAngle’, Y) :-

3 hatR(m2, 3, 2, (CL, CLAddrMID, CLAddrPC)),

4 subclass(CL, ’Lru/watabou/moon3d/MoonView;’),

5 hatR(m2, 3, 1, Y).

6 hatR(m2, 4, V, Y) :-

7 hatR(m2, 3, V, Y).

The references from register p0 (register 2) at the current program counter are
extracted. The subclass condition check is implicit: If the subclass/2 goal
fails, the hatH/3 relation does not hold for those particular arguments and
another reference from register p0 can be tried. If it succeeds, the variable
Y is bound to each value from the source register in turn. Also, all registers
are transferred to the next program point.
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6.4 Prolog Relations

This section gives an overview of the Prolog relations our output programs
consist of. Some relations represent the analysis itself while others repre-
sent program structure, method resolution, and auxiliary functions. Some
facilitate interactive querying and one is used for the specific call graph anal-
ysis. Some are introduced to simplify the representation or to improve the
efficiency of the analysis.

6.4.1 Analysis

The relations hatS/3, hatH/3, hatR/4, and hatE/2 represent the values of
the abstract domains that make up the analysis, Ŝ, Ĥ, R̂, and Ê. The
numbers specify the arity, i.e., the number of terms the relations relate.

To represent methods and classes, we use their fully qualified names in the
Java Class.getName() notation, i.e., Lfully/qualified/name;. Instead of
using fully qualified field names as in Dalvik and our semantics, we split them
into fully qualified class names and simple field names to facilitate querying
all fields on a specified class. Therefore, the hatS/3 relations looks as follows,
compared to its corresponding abstract domain:

̂StaticHeap = Field→ V̂al hatS(class, field, value)

where class, field, and value represent Prolog terms.

For simplicity, we have flattened the dynamic heap and the mapping of ob-
jects and arrays to their values into a single relation. Since names of classes
and array types cannot collide (the latter always start with the square bracket
character, ‘[’), it is not a problem to mix object and array references:

Ĥeap = Ref → (Ôbject + Ârray)

Ôbject = Field→ V̂al

Ârray = V̂al

hatH(ref, field, value)

To model arrays as objects, we introduce an artificial field named values

to store the values. Because of the textual object graph representation, the
ref term will be a triple representing the class or array type and the textual
creation point.

The register contents relation follows the ̂LocalReg domain with the method
and program counter value specified directly:
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̂LocalReg = Addr→ (Register ∪ {END})→ V̂al

hatR(method, pc, reg, value)

For efficiency, we replace the use of the special program counter value and
register END with the return/2 relation which specifies return values from
methods:

return(method, value)

Similarly, when methods are invoked and arguments are transferred in R̂ to
pc 0 of the invoked method, we use the special invoke/3 relation:

invoke(method, argnum, val)

This allows us to specify argument numbers instead of register numbers such
that the mapping between these numbers can be calculated statically once
instead of at Prolog runtime each time a method is invoked. Thus, for each
method, rules like the following will be generated. Here, the method m takes
three arguments in registers 6, 7 and 8 (registers 0 to 5 are used for local
variables):

hatR(m, 0, 6, Y) :- invoke(m, 0, Y).

hatR(m, 0, 7, Y) :- invoke(m, 1, Y).

hatR(m, 0, 8, Y) :- invoke(m, 2, Y).

The final analysis relation is the exception cache:

̂ExcCache = Method→ P(ExcRef) hatE(method, class)

The contrast between values and sets of values in the analysis is especially
visible in this last comparison of domain and relation, but it is present in all
the above relations. Sets appear implicitly in our Prolog representation since
the same terms may appear in several relationships. For example, if a field
named myField on an object with reference r may contain the values from
the set {0, 1, 2}, the following relationships all hold:

hatH(r, ’myField’, 0).

hatH(r, ’myField’, 1).

hatH(r, ’myField’, 2).

6.4.2 Program Structure

We only represent the parts of the program structure that are necessary for
the analysis. The super/2 relation specifies pairs of superclasses and their
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immediate subclasses. It is used among other places in the template for the
rules for the invoke-super instruction. Some facts of this relation are based
on the app under analysis while those that pertain to Java appear in the
Prolog output for every app. The fact

super(bot, ’Ljava/lang/Object;’).

follows from our definition of the superclass of Object. Here, bot is simply
a Prolog atom representing ⊥.

For use in exception handling, we model the standard Java exception type
hierarchy:

super(’Ljava/lang/Object;’, ’Ljava/lang/Throwable;’).

super(’Ljava/lang/Throwable;’, ’Ljava/lang/Exception;’).

super(’Ljava/lang/Throwable;’, ’Ljava/lang/Error;’).

super(’Ljava/lang/Exception;’, ’Ljava/lang/RuntimeException;’).

. . .

The relation method/7 links methods to their method declaration information
which is used by querying helper relations (see Section 6.4.4).

The remaining program structure is not needed or otherwise present in the
Prolog program. Notably, the instructionAt access function is not modelled
explicitly since the constraints represented by each instruction are present in
the program directly as Prolog rules.

6.4.3 Auxiliary Functions

The relations unop/3 and binop/4 are straightforward:

ûnOpop(c) unop(op, c, result)

b̂inOpop(c1, c2) binop(op, c1, c2, result)

In the current implementation, we simply let any calculation return >
P̂rim

with the following two facts. They use the Prolog anonymous variable, , to
ignore their arguments:

unop( , , top prim). binop( , , , top prim).

Method resolution corresponding to the use of resolveMethod(meth, cl) in-
volves the relations resolveFact/5 and resolve/5 and is discussed in Sec-
tion 6.5.

46



Chapter 6 Prolog Relations

Our auxiliary function super∗ metioned in Section 5.2 is represented by the
ancestor/2 relation which relates pairs of classes as the transitive closure of
the super/2 relation (similar to Listing 6.1).

Our current version of the representation function, β, which maps values
into singleton sets, has no representation in our Prolog programs due to the
implicit representation of sets.

The remaining auxiliary functions concern exception handling. handler/6

specifies the existence of an exception handler. The relations canHandle/4,
isFirstHandler/4, and findHandler/4 correspond to the predicates and
the function of the same names in [WK12].

The HANDLE predicate of Section 4.2.2 expands to the following rules for an
exception with reference (cl e, m e, pc e) handled at address (m, pc):

1 % If a handler is found, transfer the exception reference to retval at the

handler’s location

2 hatR(m, HandlerPC, retval, (cl_e, m_e, pc_e)) :-

3 findHandler(m, pc, cl_e, HandlerPC),

4 HandlerPC \= bot.

5

6 % If a handler is found, transfer other registers unchanged

7 hatR(m, HandlerPC, V, Y) :-

8 findHandler(m, pc, cl_e, HandlerPC),

9 HandlerPC \= bot,

10 hatR(m, pc, V, Y),

11 V \= retval.

12

13 % If no handler is found, add the exception reference to the cache

14 hatE(m, (cl_e, m_e, pc_e)) :-

15 findHandler(m, pc, cl_e, HandlerPC),

16 HandlerPC = bot.

6.4.4 Querying

Basic queries use one of the analysis relations, for example hatR/4:

1 | ?- hatR(’Lsome/package/FooClass;->barMethod()V’, 27, 4, Y).

2 Y = 0

3 Y = 75

4 no
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To make it easy to get an overview of the data flow in a method, we created
the methodContent/1 relation which, provided with a method, prints the set
of contents of each register containing a value at each program point in the
method:

1 | ?- methodContent(’Lmy/pkg/MyActivity;->onCreate(Landroid/os/Bundle;)V’).

2 NumLocals: 8

3

4 PC 0:

5 invoke-super {p0, p1}, Landroid/app/Activity;->onCreate(Landroid/os/Bundle;)V

6 v8: [(Lmy/pkg/MyActivity; ’,’ _h243 ’,’ _h244)]

7 v9: [(Landroid/os/Bundle; ’,’ android ’,’ 0)]

8

9 PC 1:

10 :try_start_0

11 const-string v4, "my.pkg.ClassB"

12 ...

It also prints labels and the smali bytecode mnemonics as shown above to
provide an easy overview. Unlike other Prolog relations, the output is not
related to the given method name in the relation but is instead printed as a
side effect.

The terms h243 and h244 on line 6 are unbound variables from the Pro-
log engine which means that the method is called on any object of type
MyActivity independently of creation point. The (android, 0) artificial
creation point seen on line 7 stems from the argument being created by An-
droid, i.e., instantiated outside of the app under analysis. We treat the topic
of entry points in Section 6.6.3.

6.4.5 Call Graph Analysis

The methodCall/3 relation relates two methods if the first calls the second.
The third argument denotes whether the call is reflective or normal:

methodCall(caller, callee, calltype)

For each Dalvik invoke instruction, we generate a rule of the form

1 methodCall(m, Callee, regular) :-

2 hatR(m, pc, reg_obj, (Class, _, _)),

3 resolve(Class, method_name, arg_types, return_type, Callee).
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where (m, pc) is the address of the invoke instruction, reg obj is the register
containing the references of the objects the method is invoked on (e.g., v4
for invoke-virtual {v4, v2, v13}, L...), and method name, arg types,
and return type have the appropriate values for the method signature spec-
ified with the invoke instruction.

For invoke-direct and invoke-static, a methodCall/3 fact is generated
instead of a rule because of static method resolution as we discuss in Sec-
tion 6.5.

To run the analysis and extract the call graph information, we query the
auxiliary relation printMethodCalls/0 which calls methodCall/3 and prints
a line for each method call. With some further processing, this becomes DOT
source code which can be rendered to an image by the Graphviz dot graph
visualizer [Gra12]. An example of such an image for a small test app is shown
in Figure 6.2 on the following page. The call type is illustrated with reflective
calls as dashed arrows. Methods that we handle as special cases of Dalvik
invoke instructions are placed in the API area.
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6.5 Method Resolution

We created the resolve/5 relation to model the resolveMethod(meth, cl)
semantic function:

resolve(class, method name, arg types, return type, method)

but instead of implementing it recursively like resolveMethod, we create facts
that can be looked up quickly. Each smali file represents a class and contains
a .super pseudo-instruction. During the parsing we record pairs of classes
and their superclasses, and from this, we build a tree of the class hierarchy
in the app. Then, for each method in the app, we walk the tree down
from the method’s class to find all subclasses where resolving the method
signature would lead to that method, i.e., those that do not implement the
method themselves. For each of these classes, we generate a fact of the
resolveFact/5 relation, which relates the same arguments as resolve/5.
For example, if classes A through D form an inheritance chain and A and C

implement the method int foo(), these facts would be generated:

1 resolveFact(’Lmy/pkg/A;’, ’foo’, [], ’I’, ’Lmy/pkg/A;->foo()I’).

2 resolveFact(’Lmy/pkg/B;’, ’foo’, [], ’I’, ’Lmy/pkg/A;->foo()I’).

3 resolveFact(’Lmy/pkg/C;’, ’foo’, [], ’I’, ’Lmy/pkg/C;->foo()I’).

4 resolveFact(’Lmy/pkg/D;’, ’foo’, [], ’I’, ’Lmy/pkg/C;->foo()I’).

The difference between resolveFact/5 and resolve/5 is that the former
represents resolutions that will succeed while the latter fails with the string
’UNRESOLVED method call’ when a method that is not implemented in the
app itself is invoked:

1 resolve(Class, MethodName, ArgTypes, ReturnType, Method) :-

2 (resolveFact(Class, MethodName, ArgTypes, ReturnType, Method), !) ;

3 Method = ’UNRESOLVED method call’.

The cut ensures that a method will not be both resolved and unresolved. We
discuss the consequences of unresolved methods in Section 6.6.1.

For invoke-static, the method resolution does not depend on an object
and can therefore be performed statically. For invoke-direct the method is
implemented in the class in the method signature and there is no resolution at
all, only a lookup to see if the implementation exists. For these instructions
the usual invoke rules using resolve/5 are replaced by ones that transfer
the arguments and return value directly in and out of the statically resolved
method.
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6.6 Modelling Java and Android

This section discusses features and program components that are not imple-
mented in the apps and must therefore be modelled separately.

6.6.1 API Methods

Methods that are called but not implemented in an app may be from Java
standard classes, Android APIs, and from other apps signed by the same
developer key. They can also come from classes loaded at runtime but apps
that do this are not amenable to static analysis before installation in the first
place as discussed in Chapter 2.

Without handling external methods in some way, it is not possible to resolve
the implemented methods. The potential effects of a single method are far-
reaching. Using reflection, any method, including private ones, can be called,
and anything reachable on the heap from the references given to the unknown
method can be changed, again including private and final fields. It is even
possible that debugging or diagnostics APIs allow programmatic access to
the full heap.

In a specialized analysis it would be useful to be able to trust Java and
Android API methods not to do anything malicious, for example by just
setting their return values to top, but due to the possibilities of affecting
the heap, every API method would require some inspection to determine its
effects on the heap. APIs can also be handled as we have done with parts of
the reflection API by modelling the methods with individual flow judgements,
or they could be compiled to Dalvik bytecode and analyzed along with the
app. This last approach might impact the running time of the analysis by
increasing the effective size of the app considerably and would only work for
the parts of the Java standard classes that are implemented in Java.

6.6.2 Java Features

We have already covered the modelling of the java/lang/Object class and
of exceptions in Section 6.4.2.

Another Java feature we needed to represent is the java/lang/Class in-
stances that represent primitive types. They are stored as static fields
named TYPE on the corresponding box classes, so an sget instruction is
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produced by the Dalvik compiler instead of const-class. For exam-
ple, the java/lang/Class instance representing the int type is stored as
Integer.TYPE. We model this with two Prolog facts like the following for
each of the eight primitive Java types plus void:

hatS(’Ljava/lang/Integer;’, ’TYPE:Ljava/lang/Class;’,

(’Ljava/lang/Class;’, java, 1)).

hatH((’Ljava/lang/Class;’, java, 1), ’name’, ’int’).

Here, (java, 1) is introduced as the creation point of the java/lang/Class

instance. The program counter values from 1 to 9 are used for the 9 ob-
jects.

6.6.3 Entry Points

As discussed in Section 3.3, Android apps are simply a collection of classes
with methods that can be called by the Android system.

We have identified 1,695 onSomeEvent () methods in the Android API, for
example onLocationChanged() or onPictureTaken(). Some are on inter-
faces, other on classes. We generate Prolog facts to simulate calls to the
methods on all classes in the app that implement one of the relevant API
interfaces and on all subclasses of the relevant API classes. We also call
the constructors on subclasses of the four main app components that are in-
stantiated by Android: activities, services, broadcast receivers, and content
providers. The remaining many minor app components are listeners that are
instantiated by the app itself before they are registered such that Android
can call them.

All of these entry point methods are instance methods and as a simple over-
approximation, we invoke the methods on all object references of the class,
the method is implemented in, using the anonymous variable to ignore the
creation point, e.g.:

(Lmy/pkg/MyActivity$1;->onClick(Landroid/view/View;)V, , )

The arguments passed to the entry point methods are >
P̂rim

for primitive ar-
guments and otherwise objects with the artificial creation point (android, 0)
to show that the argument was created by the Android system.

Class constructors (<clinit>) also form entry points but they do not need to
be called because they do not depend on arguments. All instructions generate
constraints whether the method they reside in is called or not.
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6.7 Analyzing Real Apps

We have tested the prototype with many forms of interactive querying and
with call graph generation on several apps from our data set. For real apps,
extracting the call graph may take seconds to hours depending on the size.
Every Dalvik instruction is converted to a number of Prolog rules, and some
apps are too big to analyze even on a server with 68 GB RAM. Since we
have implemented and improved the analysis simultaneously, readability and
debuggability of the Prolog code has been important to us. We expect that
with a different approach it would be possible to improve the efficiency at
the cost of the readability of the output.

As an example of an approach to malware detection, we have examined apps
that send text messages to see which numbers are used as destination. In
many cases, it was not possible to know the numbers because they come from
API methods that we do not support. The typical pattern for legitimate apps
that send text messages is to retrieve numbers from the database with the
user’s contact list which requires a large number of API calls, some to connect
to the database, some to read the content, and some to store and retrieve
the results from Java collections.

A typical pattern for malware is to send messages to hardcoded numbers.
Some apps that use hardcoded numbers are specialized and store different
numbers for different countries in XML files which require a number of API
calls to parse and extract. We found an app where our analysis determined
that the string 1277 was the only possible value given as the destination
argument of sendTextMessage(), but the description of the app (Find Taxa
Danmark) on Google Play states that the app sends a premium message, so
it cannot be classified as malicious even though it seems to make money on
inattentive users.

We also analyzed a known malicious Russian app [Ali11] posing as a movie
player, and our analysis could confirm this by querying the destination ar-
gument of sendTextMessage():

invoke(’Landroid/telephony/SmsManager;->sendTextMessage(Ljava/lang/String;

Ljava/lang/String;Ljava/lang/String;Landroid/app/PendingIntent;

Landroid/app/PendingIntent;)V’, 1, (’Ljava/lang/String;’, M, PC)),

hatH((’Ljava/lang/String;’, M, PC), ’value’, Y).

This query yielded the numbers 3353 and 3354 for which each text message
may cost around e4–8 [SP12a, SP12b].
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Conclusion

We have defined a formal semantics and control flow analysis of Android
apps with support for dynamic features including reflection. The level of
detail in the analysis enables it to yield useful results for real-world Android
apps. This includes textual object graphs and handling of details close to
the actual implementation of specific features on Android.

During our earlier comprehensive study of features used in Android, we dis-
covered that reflection is used extensively by Android developers. We have
expanded the study of these features and specified operational semantics for
central parts of the Java reflection API, as well as expanded the control flow
analysis to demonstrate how these dynamic features can be analyzed stati-
cally prior to app installation. Furthermore, we have expanded the analysis
with support for WebKit Javascript interfaces, a feature that allows exposing
Java objects to Javascript control in a built-in browser.

To fully analyze an app, all of the APIs it uses need to be handled as a spe-
cialized part of the analysis, e.g., in the same way that we have modelled the
reflection API. Our analysis is a safe over-approximation that can form the
grounds of such an analysis that includes the Java and Android APIs.

We have developed a prototype implementation of the analysis that gener-
ates Prolog clauses based on the constraints specified in the analysis. The
generated Prolog program can be queried for information such as the content
of registers in specific methods and fields on specific objects. This can for
example be used to determine which phone numbers are used in the API
method for sending text messages, which in turn could be used in analyz-
ing malware. The prototype is also able to generate call graphs for apps,
including calls made through reflection.
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Appendix A

Generalized Instruction Set

Opcode Original instruction Generalized instruction

00 nop nop

01 move move

02 move/from16

03 move/16

04 move-wide

05 move-wide/from16

06 move-wide/16

07 move-object

08 move-object/from16

09 move-object/16

0a move-result move-result

0b move-result-wide

0c move-result-object

0d move-exception move-exception

0e return-void return-void

0f return return

10 return-wide

11 return-object

12 const/4 const

13 const/16

14 const

15 const/high16

16 const-wide/16

17 const-wide/32

18 const-wide

19 const-wide/high16

1a const-string const-string

1b const-string/jumbo

1c const-class const-class
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Opcode Original instruction Generalized instruction

1d monitor-enter monitor-enter

1e monitor-exit monitor-exit

1f check-cast check-cast

20 instance-of instance-of

21 array-length array-length

22 new-instance new-instance

23 new-array new-array

24 filled-new-array filled-new-array

25 filled-new-array/range

26 fill-array-data fill-array-data

27 throw throw

28 goto goto

29 goto/16

2a goto/32

2b packed-switch packed-switch

2c sparse-switch sparse-switch

2d cmpl-float cmp

2e cmpg-float

2f cmpl-double

30 cmpg-double

31 cmp-long

32 if-eq if

33 if-ne

34 if-lt

35 if-ge

36 if-gt

37 if-le

38 if-eqz ifz

39 if-nez

3a if-ltz

3b if-gez

3c if-gtz

3d if-lez

3e..43 (unused)
44 aget aget

45 aget-wide

46 aget-object

47 aget-boolean

48 aget-byte

49 aget-char

4a aget-short

4b aput aput

4c aput-wide

4d aput-object
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Opcode Original instruction Generalized instruction

4e aput-boolean

4f aput-byte

50 aput-char

51 aput-short

52 iget iget

53 iget-wide

54 iget-object

55 iget-boolean

56 iget-byte

57 iget-char

58 iget-short

59 iput iput

5a iput-wide

5b iput-object

5c iput-boolean

5d iput-byte

5e iput-char

5f iput-short

60 sget sget

61 sget-wide

62 sget-object

63 sget-boolean

64 sget-byte

65 sget-char

66 sget-short

67 sput sput

68 sput-wide

69 sput-object

6a sput-boolean

6b sput-byte

6c sput-char

6d sput-short

6e invoke-virtual invoke-virtual

6f invoke-super invoke-super

70 invoke-direct invoke-direct

71 invoke-static invoke-static

72 invoke-interface invoke-interface

73 (unused)
74 invoke-virtual/range invoke-virtual

75 invoke-super/range invoke-super

76 invoke-direct/range invoke-direct

77 invoke-static/range invoke-static

78 invoke-interface/range invoke-interface

79..7a (unused)
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Opcode Original instruction Generalized instruction

7b neg-int unop

7c not-int

7d neg-long

7e not-long

7f neg-float

80 neg-double

81 int-to-long

82 int-to-float

83 int-to-double

84 long-to-int

85 long-to-float

86 long-to-double

87 float-to-int

88 float-to-long

89 float-to-double

8a double-to-int

8b double-to-long

8c double-to-float

8d int-to-byte

8e int-to-char

8f int-to-short

90 add-int binop

91 sub-int

92 mul-int

93 div-int

94 rem-int

95 and-int

96 or-int

97 xor-int

98 shl-int

99 shr-int

9a ushr-int

9b add-long

9c sub-long

9d mul-long

9e div-long

9f rem-long

a0 and-long

a1 or-long

a2 xor-long

a3 shl-long

a4 shr-long

a5 ushr-long

a6 add-float
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Opcode Original instruction Generalized instruction

a7 sub-float

a8 mul-float

a9 div-float

aa rem-float

ab add-double

ac sub-double

ad mul-double

ae div-double

af rem-double

b0 add-int/2addr binop

b1 sub-int/2addr

b2 mul-int/2addr

b3 div-int/2addr

b4 rem-int/2addr

b5 and-int/2addr

b6 or-int/2addr

b7 xor-int/2addr

b8 shl-int/2addr

b9 shr-int/2addr

ba ushr-int/2addr

bb add-long/2addr

bc sub-long/2addr

bd mul-long/2addr

be div-long/2addr

bf rem-long/2addr

c0 and-long/2addr

c1 or-long/2addr

c2 xor-long/2addr

c3 shl-long/2addr

c4 shr-long/2addr

c5 ushr-long/2addr

c6 add-float/2addr

c7 sub-float/2addr

c8 mul-float/2addr

c9 div-float/2addr

ca rem-float/2addr

cb add-double/2addr

cc sub-double/2addr

cd mul-double/2addr

ce div-double/2addr

cf rem-double/2addr

d0 add-int/lit16 binop-lit

d1 rsub-int

d2 mul-int/lit16
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Opcode Original instruction Generalized instruction

d3 div-int/lit16

d4 rem-int/lit16

d5 and-int/lit16

d6 or-int/lit16

d7 xor-int/lit16

d8 add-int/lit8

d9 rsub-int/lit8

da mul-int/lit8

db div-int/lit8

dc rem-int/lit8

dd and-int/lit8

de or-int/lit8

df xor-int/lit8

e0 shl-int/lit8

e1 shr-int/lit8

e2 ushr-int/lit8

e3..ff (unused)
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Semantic Domains

Package = (name: PackageName)×
(app: App)×
(classes:P(Class))

App = (name: AppName)×
(classes:P(Class))×
(interfaces:P(Interface))×
(manifest: Manifest)×
(certificate: Certificate)×
(resources:P(Resource))×
(assets:P(Asset))×
(libs:P(Lib))

Class = (name: ClassName)×
(app: App)×
(package: Package)×
(super: Class⊥)×
(methods:P(Method))×
(methodDeclarations:P(MethodDeclaration))×
(fields:P(Field))×
(accessFlags:P(AccessFlag))×
(implements:P(Interface))
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Interface = (name: ClassName)×
(app: App)×
(package: Package)×
(super:P(Interface))×
(methodDeclarations:P(MethodDeclaration))×
(clinit: Method⊥)×
(fields:P(Field))×
(accessFlags:P(AccessFlag))×
(implementedBy :P(Class))

MethodSignature = (name: MethodName)×
(class: Class ∪ Interface)×
(argTypes: Type∗)×
(returnType: Type ∪ {void})

MethodDeclaration = (methodSignature: MethodSignature)×
(kind: Kind)×
(accessFlags:P(AccessFlag))×
(exceptionTypes:P(Class))

Method = (methodDeclaration: MethodDeclaration)×
(instructionAt: PC→ Instruction)×
(numLocals:N0)×
(handlers:N0 → ExcHandler)×
(tableAt: PC→ ArrayData ∪ PackedSwitch ∪ SparseSwitch)

ExcHandler = (catchType: Class⊥)×
(handlerAddr: PC)×
(startAddr: PC)×
(endAddr: PC)

AccessFlag = {public, private, protected, final, abstract,
varargs, native, enum, constructor, volatile}

Kind = {virtual, static, direct}

Field = (name: FieldName)×
(class: Class ∪ Interface)×
(type: Type)×
(initialValue: Prim ∪ {null})×
(isStatic: Bool)×
(accessFlags:P(AccessFlag))
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ArrayData = (size:N0)×
(data:N0 → Prim)

SparseSwitch = (sparseTargets:N0 → PC)

PackedSwitch = (firstKey :N0)×
(size:N0)×
(packedTargets:N0 → PC)

Type ::= RefType | PrimType

PrimType ::= PrimSingle | PrimDouble

PrimSingle ::= boolean | char | byte | short | int | float

PrimDouble ::= long | double

RefType ::= Class | ArrayType

ArrayType ::= ArrayTypeSingle | ArrayTypeDouble

ArrayTypeSingle ::= array (RefType | PrimSingle)

ArrayTypeDouble ::= array PrimDouble

StaticHeap = Field→ Val
Heap = Ref → (Object + Array)

Object = (class: Class)× (field: Field→ Val)
Array = (type: ArrayType)× (length:N0)× (value:N0 → Val)

Prim = Z

String = Char∗

Val = Prim + Ref

Ref = Location ∪ {null}

LocalReg = Register→ Val⊥

Register = N0 ∪ {retval}

Addr = Method× PC

PC = N0

Frame = Method× PC× LocalReg

CallStack = (Frame + ExcFrame)× Frame∗
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ExcFrame = Location×Method× PC

Configuration = StaticHeap× Heap× CallStack

Subtyping

implements∗(⊥) = ∅
implements∗(cl) = cl .implements

∪ (cl .super).implements∗

∪ (cl .implements).super∗

super∗(ifaces) =
⋃

iface∈ifaces

iface.super ∪ (iface.super).super∗

super∗(⊥) = ∅
super∗(cl) = {cl .super} ∪ (cl .super).super∗

cl ′ ∈ super∗(cl)

cl � cl ′

iface ∈ implements∗(cl)

cl � iface

t � t′

(array t) � (array t′)

cl ∈ Class

cl � cl
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Semantic Rules

m.instructionAt(pc) = nop

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = const v c

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ c]〉 :: SF 〉

m.instructionAt(pc) = move v1 v2
A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ R(v2)]〉 :: SF 〉

m.instructionAt(pc) = move-result v

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ R(retval)]〉 :: SF 〉

m.instructionAt(pc) = binopop v1 v2 v3 c = binOpop(R(v2), R(v3))

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c]〉 :: SF 〉

m.instructionAt(pc) = binop-litop v1 v2 c c′ = binOpop(R(v2), c)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c′]〉 :: SF 〉

m.instructionAt(pc) = unopop v1 v2 c = unOpop(R(v2))

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c]〉 :: SF 〉

m.instructionAt(pc) = goto pc′

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′, R〉 :: SF 〉

relOpop(c1, c2) = c1 op c2

op ∈ RelOp = {eq, ne, lt, le, gt, ge}
m.instructionAt(pc) = if op v1 v2 pc′ relOpop(R(v1), R(v2))

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′, R〉 :: SF 〉

m.instructionAt(pc) = if op v1 v2 pc′ ¬relOpop(R(v1), R(v2))

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉
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m.instructionAt(pc) = ifz op v pc′ relOpop(R(v), 0)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′, R〉 :: SF 〉

m.instructionAt(pc) = ifz op v pc′ ¬relOpop(R(v), 0)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

newObject: Heap× Class→ Heap× Ref
newObject(H, cl) = (H ′, loc)
where loc /∈ dom(H) , H ′ = H[loc 7→ o] , o ∈ Object , o.class = cl

m.instructionAt(pc) = new-instance v cl (H ′, loc) = newObject(H, cl)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[v 7→ loc]〉 :: SF 〉

m.instructionAt(pc) = const-string v s
(H ′, loc) = newObject(H, java/lang/String)
o = H ′(loc) o′ = o[field 7→ o.field[value 7→ s]]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′[loc 7→ o′], 〈m, pc+ 1, R[v 7→ loc]〉 :: SF 〉

m.instructionAt(pc) = const-class v cl
(H ′, locc) = newObject(H, java/lang/Class)

(H ′′, locs) = newObject(H ′, java/lang/String)
oc = H ′′(locc) o′c = oc[field 7→ oc.field[name 7→ locs]]

os = H ′′(locs) o′s = os[field 7→ os.field[value 7→ cl .name]]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′′[locc 7→ o′c, locs 7→ o′s], 〈m, pc+ 1, R[v 7→ loc]〉 :: SF 〉

m.instructionAt(pc) = iget v1 v2 fld
R(v2) = loc 6= null o = H(loc)

o.class � fld .class R′ = R[v1 7→ o.field(fld)]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R′〉 :: SF 〉

m.instructionAt(pc) = iput v1 v2 fld
R(v2) = loc 6= null o = H(loc)

o.class � fld .class o′ = o[field 7→ o.field[fld 7→ R(v1)]]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H[loc 7→ o′], 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = sget v fld

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ S(fld)]〉 :: SF 〉

m.instructionAt(pc) = sput v fld

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S[fld 7→ R(v)], H, 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = instance-of v1 v2 type

loc = R(v2) o = H(loc) c =

 1 if o ∈ Object ∧ o.class � type ∨
o ∈ Array ∧ o.type � type

0 otherwise

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c]〉 :: SF 〉

m.instructionAt(pc) = cmp bias v1 v2 v3 c = cmpbias(R(v2), R(v3))

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ c]〉 :: SF 〉

73



Appendix C

resolveMethod(meth, cl) =
⊥ if cl = ⊥
m if m ∈ cl .methods ∧meth / m
resolveMethod(meth, cl .super) otherwise

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth
R(v1) = loc loc 6= null o = H(loc)

n = arity(meth) m′ = resolveMethod(meth, o.class) 6= ⊥
R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,

m′.numLocals 7→ v1, . . . ,m
′.numLocals + n− 1 7→ vn]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth
R(v1) = null (H ′, loce) = newObject(H, NullPointerException)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈loce,m, pc〉 :: 〈m, pc,R〉 :: SF 〉

m.instructionAt(pc) = invoke-virtual v1 . . . vn meth
R(v1) = loc loc 6= null o = H(loc)

n = arity(meth) resolveMethod(meth, o.class) = ⊥
(H ′, loce) = newObject(H, NoSuchMethodError)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈loce,m, pc〉 :: 〈m, pc,R〉 :: SF 〉

Throwing of runtime exceptions for the remaining invoke instructions is not
shown but is similar to that for invoke-virtual.

m.instructionAt(pc) = invoke-direct v1 . . . vn meth
R(v1) = loc loc 6= null o = H(loc)

n = arity(meth) m′ = resolveDirectMethod(meth, o.class)
R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,

m′.numLocals 7→ v1, . . . ,m
′.numLocals + n− 1 7→ vn]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

m.instructionAt(pc) = invoke-interface v1 . . . vn meth
R(v1) = loc loc 6= null o = H(loc)

n = arity(meth) m′ = resolveMethod(meth, o.class)
R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,

m′.numLocals 7→ v1, . . . ,m
′.numLocals + n− 1 7→ vn]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

m.instructionAt(pc) = invoke-super v1 . . . vn meth
R(v1) = loc loc 6= null o = H(loc) o.class.super 6= ⊥
n = arity(meth) m′ = resolveMethod(meth, o.class.super)
R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,

m′.numLocals 7→ v1, . . . ,m
′.numLocals + n− 1 7→ vn]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉
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m.instructionAt(pc) = invoke-static v1 . . . vn meth
n = arity(meth) m′ = resolveMethod(meth,meth.class)
R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,

m′.numLocals 7→ v1, . . . ,m
′.numLocals + n− 1 7→ vn]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: 〈m, pc,R〉 :: SF 〉

m.instructionAt(pc) = return-void

A ` 〈S,H, 〈m, pc,R〉 :: 〈m′, pc′, R′〉 :: SF 〉 =⇒ 〈S,H, 〈m′, pc′ + 1, R′〉 :: SF 〉

m.instructionAt(pc) = return v

A ` 〈S,H, 〈m, pc,R〉 :: 〈m′, pc′, R′〉 :: SF 〉 =⇒
〈S,H, 〈m′, pc′ + 1, R′[retval 7→ R(v)]〉 :: SF 〉

The function newArray is similar to newObject but allocates an array of the
specified type and length and initializes the fields to 0 or null depending on
the type.

m.instructionAt(pc) = new-array v1 v2 type
type ∈ ArrayType n = R(v2) ≥ 0 (H ′, loc) = newArray(H,n, type)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[v1 7→ loc]〉 :: SF 〉

m.instructionAt(pc) = array-length v1 v2 R(v2) = loc 6= null a = H(loc)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc,R[v1 7→ a.length]〉 :: SF 〉

m.instructionAt(pc) = aget v1 v2 v3 R(v2) = loc 6= null a = H(loc) i = R(v3)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v1 7→ a.value(i)]〉 :: SF 〉

m.instructionAt(pc) = aput v1 v2 v3 R(v2) = loc 6= null a = H(loc)
i = R(v3) a′ = a[value 7→ a.value[i 7→ R(v1)]]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H[loc 7→ a′], 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = filled-new-array v1 . . . vn type
type ∈ ArrayTypeSingle (H ′, loc) = newArray(H,n, type)

a = H ′(loc) a′ = a[value 7→ a.value[0 7→ R(v1), . . . , n− 1 7→ R(vn)]]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′[loc 7→ a′], 〈m, pc+ 1, R[retval 7→ loc]〉 :: SF 〉

m.instructionAt(pc) = fill-array-data v pc′

R(v) = loc 6= null a = H(loc) d = m.tableAt(pc′)
a′ = a[value 7→ a.value[0 7→ d.data(0), . . . , d.size − 1 7→ d.data(d.size − 1)]]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H[loc 7→ a′], 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = packed-switch v pc′ s = m.tableAt(pc′)
i = R(v)− s.firstKey i ∈ dom(s.packedTargets) pc′′ = s.packedTargets(i)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′′, R〉 :: SF 〉

m.instructionAt(pc) = packed-switch v pc′ s = m.tableAt(pc′)
i = R(v)− s.firstKey i /∈ dom(s.packedTargets)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉
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m.instructionAt(pc) = sparse-switch v pc′ s = m.tableAt(pc′)
R(v) ∈ dom(s.sparseTargets) pc′′ = s.sparseTargets(R(v))

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc′′, R〉 :: SF 〉

m.instructionAt(pc) = sparse-switch v pc′ s = m.tableAt(pc′)
R(v) /∈ dom(s.sparseTargets)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = throw v
R(v) = loce 6= null H(loce).class � Throwable

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈loce,m, pc〉 :: 〈m, pc,R〉 :: SF 〉

m.instructionAt(pc) = move-exception v
R(v) = loce 6= null H(loce).class � Throwable

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R[v 7→ R(retval)]〉 :: SF 〉

canHandle(h, pc, cl e) ≡ h.startAddr ≤ pc ≤ h.endAddr ∧
(cl e � h.catchType ∨ h.catchType = ⊥)

isFirstHandler(η, i, pc, cl e) ≡ canHandle(η(i), pc, cl e) ∧
(∀j ≤ i: canHandle(η(j), pc, cl e))

findHandler(m, pc, cl e) =
η(i).handlerAddr if η = m.handlers ∧ dom(η) 6= ∅ ∧

∃i: isFirstHandler(η, i, pc, cl e)
⊥ otherwise

cl = H(loce).class findHandler(m, pc, cl) = pc′ 6= ⊥
A ` 〈S,H, 〈loce,me, pce〉 :: 〈m, pc,R〉 :: SF 〉 =⇒

〈S,H, 〈m, pc′, R[retval 7→ loce]〉 :: SF 〉

cl = H(loce).class findHandler(m, pc, cl) = ⊥
A ` 〈S,H, 〈loce,me, pce〉 :: 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈loce,m, pc〉 :: SF 〉

m.instructionAt(pc) = check-cast v type
loc = R(v) 6= null o = H(loc)

(o ∈ Object ∧ o.class � type) ∨ (o ∈ Array ∧ o.type � type)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m, pc+ 1, R〉 :: SF 〉

m.instructionAt(pc) = check-cast v type
loc = R(v) 6= null o = H(loc)

(o ∈ Object ∧ o.class � type) ∨ (o ∈ Array ∧ o.type � type)
(H ′, loce) = newObject(H, ClassCastException)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈loce,m, pc〉 :: 〈m, pc,R〉 :: SF 〉
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Abstract Domains

Val = Prim + Ref + {null}

V̂al = P(Val)

Ref = ObjRef + ArrRef

ObjRef = Class×Method× PC

ArrRef = ArrayType×Method× PC

ExcRef = ObjRef

P̂rim = P(Prim) = P(Prim) = P(Z)

Addr = Addr + (Method× {END})

Ŝtring = P(String) = P(String)

̂LocalReg = Addr→ (Register ∪ {END})→ V̂al

̂StaticHeap = Field→ V̂al

Ĥeap = Ref → (Ôbject + Ârray)

Ôbject = Field→ V̂al

Ârray = V̂al

̂ExcCache = Method→ P(ExcRef)

Ânalysis = ̂StaticHeap× Ĥeap× ̂LocalReg × ̂ExcCache
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Notation and Functions

R̂(a1) v R̂(a2) iff ∀r ∈ dom(R̂(a1)) : R̂(a1)(r) v R̂(a2)(r)

F1 vX F2 iff ∀a ∈ dom(F1) \X : F1(a) v F2(a)

HANDLE(R̂,Ê)((ExcRef (cle,me, pce)), (m, pc)) ≡
findHandler(m, pc, cle) = pc′ 6= ⊥ ⇒
{ExcRef (cle,me, pce)} ⊆ R̂(m, pc′)(retval)

R̂(m, pc) v{retval} R̂(m, pc′)

findHandler(m, pc, cle) = ⊥ ⇒
{ExcRef (cle,me, pce)} ⊆ Ê(m)

β(c) = {c}
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Flow Logic Judgements

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): nop

iff R̂(m, pc) v R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): const v c

iff β(c) v R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): move v1 v2
iff R̂(m, pc)(v2) v R̂(m, pc+ 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): move-result v

iff R̂(m, pc)(retval) v R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): binopop v1 v2 v3

iff ̂binOpop(R̂(m, pc)(v2), R̂(m, pc)(v3)) v R̂(m, pc+ 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): binop-litop v1 v2 c

iff ̂binOpop(R̂(m, pc)(v2), β(c)) v R̂(m, pc+ 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc+ 1)

79



Appendix E

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): unopop v1 v2

iff ̂unOpop(R̂(m, pc)(v2)) v R̂(m, pc+ 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): goto pc′

iff R̂(m, pc) v R̂(m, pc′)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): if op v1 v2 pc′

iff R̂(m, pc) v R̂(m, pc+ 1)

R̂(m, pc) v R̂(m, pc′)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): ifz op v1 pc′

iff R̂(m, pc) v R̂(m, pc+ 1)

R̂(m, pc) v R̂(m, pc′)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): cmp bias v1 v2 v3
iff β(−1)tβ(0)tβ(1) v R̂(m, pc+ 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): new-instance v cl

iff {ObjRef (cl ,m, pc)} ⊆ R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): const-string v s

iff β(s) v Ĥ(ObjRef (java/lang/String,m, pc))(value)

{ObjRef (java/lang/String,m, pc)} ⊆ R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): const-class v cl

iff β(cl .name) v Ĥ(ObjRef java/lang/String,m, pc))(value)

{ObjRef (java/lang/String,m, pc)} ⊆ Ĥ(ObjRef (java/lang/Class,m, pc))(name)

{ObjRef (java/lang/Class,m, pc)} ⊆ R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): instance-of v1 v2 type

iff β(0)tβ(1) v R̂(m, pc+ 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc+ 1)
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(Ŝ, Ĥ, R̂, Ê) |= (m, pc): iget v1 v2 fld

iff ∀(ObjRef (cl ,m′, pc′)) ∈ R̂(m, pc)(v2):
cl � fld .class ⇒
Ĥ(ObjRef (cl ,m′, pc′))(fld) v R̂(m, pc+ 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): iput v1 v2 fld

iff ∀(ObjRef (cl ,m′, pc′)) ∈ R̂(m, pc)(v2):
cl � fld .class ⇒
R̂(m, pc)(v1) v Ĥ(ObjRef (cl ,m′, pc′))(fld)

R̂(m, pc) v R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): sget v fld

iff Ŝ(fld) v R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): sput v fld

iff R̂(m, pc)(v) v Ŝ(fld)

R̂(m, pc) v R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-virtual v1 . . . vn meth

iff ∀(ObjRef (cl ,mt, pct)) ∈ R̂(m, pc)(v1):
m′ = resolveMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) v R̂(m′, 0)(m′.numLocals − 1 + i)

m′.returnType 6= void ⇒ R̂(m′,END) v R̂(m, pc+ 1)(retval)

∀(ExcRef (cle,me, pce)) ∈ Ê(m′):
HANDLE(R̂,Ê)((ExcRef (cle,me, pce)), (m, pc))

R̂(m, pc) v{retval} R̂(m, pc+ 1)

HANDLE(R̂,Ê)((ExcRef (NullPointerException,m, pc)), (m, pc))

Handling of the exceptions from the cache is not shown in the following
invoke instructions but is identical to that in invoke-virtual. Throwing
of runtime exceptions is also absent but trivial to add.

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-direct v1 . . . vn meth

iff ∀(ObjRef (cl ,mt, pct)) ∈ R̂(m, pc)(v1):
m′ = resolveDirectMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) v R̂(m′, 0)(m′.numLocals − 1 + i)

m′.returnType 6= void ⇒ R̂(m′,END) v R̂(m, pc+ 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc+ 1)
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(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-interface v1 . . . vn meth

iff ∀(ObjRef (cl ,mt, pct)) ∈ R̂(m, pc)(v1):
m′ = resolveMethod(meth, cl)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) v R̂(m′, 0)(m′.numLocals − 1 + i)

m′.returnType 6= void ⇒ R̂(m′,END) v R̂(m, pc+ 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-super v1 . . . vn meth

iff ∀(ObjRef (cl ,mt, pct)) ∈ R̂(m, pc)(v1):
cl .super 6= ⊥
m′ = resolveMethod(meth, cl .super)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) v R̂(m′, 0)(m′.numLocals − 1 + i)

m′.returnType 6= void ⇒ R̂(m′,END) v R̂(m, pc+ 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-static v1 . . . vn meth
iff m′ = resolveMethod(meth)

∀1 ≤ i ≤ n: R̂(m, pc)(vi) v R̂(m′, 0)(m′.numLocals − 1 + i)

m′.returnType 6= void ⇒ R̂(m′,END) v R̂(m, pc+ 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): return v

iff R̂(m, pc)(v) v R̂(m,END)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): return-void
iff true

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): new-array v1 v2 type

iff β(0) v Ĥ(ArrRef (type,m, pc))

{ArrRef (type,m, pc)} ⊆ R̂(m, pc+ 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): array-length v1 v2
iff >

P̂rim
v R̂(m, pc+ 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc+ 1)
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(Ŝ, Ĥ, R̂, Ê) |= (m, pc): aget v1 v2 v3
iff ∀(ArrRef a) ∈ R̂(m, pc)(v2):

Ĥ(ArrRef a) v R̂(m, pc+ 1)(v1)

R̂(m, pc) v{v1} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): aput v1 v2 v3
iff ∀(ArrRef a) ∈ R̂(m, pc)(v2):

R̂(m, pc)(v1) v Ĥ(ArrRef a)

R̂(m, pc) v R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): filled-new-array v1 . . . vn type
iff ∀1 ≤ i ≤ n:

R̂(m, pc)(vi) v Ĥ(ArrRef (type,m, pc))

{ArrRef (type,m, pc)} ⊆ R̂(m, pc+ 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): fill-array-data v pc′

iff ∀(ArrRef a) ∈ R̂(m, pc)(v):
d = m.tableAt(pc′)
∀0 ≤ i < d.size:

β(d.data(i)) v Ĥ(ArrRef a)

R̂(m, pc) v R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): packed-switch v pc′

iff s = m.tableAt(pc′)
∀pc′′ ∈ s.packedTargets:

R̂(m, pc) v R̂(m, pc′′)

R̂(m, pc) v R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): sparse-switch v pc′

iff s = m.tableAt(pc′)
∀pc′′ ∈ s.sparseTargets:

R̂(m, pc) v R̂(m, pc′′)

R̂(m, pc) v R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): throw v

iff ∀(ExcRef (cle,me, pce)) ∈ R̂(m, pc)(v):
HANDLE(R̂,Ê)((ExcRef (cle,me, pce)), (m, pc))

HANDLE(R̂,Ê)((ExcRef (NullPointerException,m, pc)), (m, pc))
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(Ŝ, Ĥ, R̂, Ê) |= (m, pc): move-exception v

iff R̂(m, pc)(retval) v R̂(m, pc+ 1)(v)

R̂(m, pc) v{v} R̂(m, pc+ 1)

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): check-cast v type

iff R̂(m, pc) v R̂(m, pc+ 1)
HANDLE(R̂,Ê)((ExcRef (ClassCastException,me, pce)), (m, pc))
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Reflection

m.instructionAt(pc) = invoke-static v1 meth
meth = java/lang/Class->forName loc = R(v1) o = H(loc)

o.class � java/lang/String o.field(value) ∈ ClassName
(H ′, loccl) = newObject(H, java/lang/Class) ocl = H ′(loccl)

o′cl = ocl [field 7→ ocl .field[name 7→ loc]]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′[loccl 7→ o′cl ], 〈m, pc+ 1, R[retval 7→ loccl ]〉 :: SF 〉

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-static v1 meth
iff meth = java/lang/Class->forName

∀(ObjRef (java/lang/String,m′, pc′)) ∈ R̂(v1):
{ObjRef (java/lang/String,m′, pc′)} ⊆
Ĥ(ObjRef (java/lang/Class,m, pc))(name)

{ObjRef (java/lang/Class,m, pc)} ⊆ R̂(m, pc+ 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc+ 1)
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m.instructionAt(pc) = invoke-virtual v1 v2 v3 meth
meth = java/lang/Class->getMethod

clnameo = H(R(v1)).field(name) clname = H(clnameo).field(value)
mname = H(R(v2)).field(value) types = H(R(v3)).field(value)

m = resolvePublicMethodDeclaration(clname,mname, types)
m 6= ⊥ (H ′, locm) = newMethodObject(H,m)

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m, pc+ 1, R[retval 7→ locm]〉 :: SF 〉

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-virtual v1 v2 v3 meth
iff meth = java/lang/Class->getMethod

mref = (ObjRef (java/lang/reflect/Method,m, pc))

∀(ObjRef (java/lang/Class,mc, pcc)) ∈ R̂(m, pc)(v1):
∀(ObjRef (java/lang/String,mo, pco)) ∈

Ĥ(ObjRef (java/lang/Class,mc, pcc))(name):

clnames = Ĥ(ObjRef (java/lang/String,mo, pco))(value)

∀(ObjRef (java/lang/String,ms, pcs)) ∈ R̂(m, pc)(v2):

{ObjRef (java/lang/String,ms, pcs)} ⊆ Ĥ(mref )(name)

mnames = Ĥ(ObjRef (java/lang/String,ms, pcs))(value)
∀m ′ ∈ resolvePublicMethodDeclarationsFromNames(mnames, clnames):

β(m′.class.name) v Ĥ(ObjRef java/lang/String,m, pc)(value)
{ObjRef (java/lang/String,m, pc)} ⊆

Ĥ(ObjRef (java/lang/Class,m, pc))(name)

{ObjRef (java/lang/Class,m, pc)} ⊆ Ĥ(mref )(declaringClass)

{mref } ⊆ R̂(m, pc+ 1)(retval)

R̂(m, pc) v{retval} R̂(m, pc+ 1)
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m.instructionAt(pc) = invoke-virtual v1 meth
meth = java/lang/Class->newInstance

loccl = R(v1) 6= null ocl = H(loccl)
on = H(ocl .field(name)) cl = lookupClass(on.field(value))

(H ′, loc) = newObject(H, cl) m′ = lookupDefaultConstructor(cl) 6= ⊥
R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,m′.numLocals 7→ H ′(loc)]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H ′, 〈m′, 0, R′〉 :: 〈m, pc+ 1, R[retval 7→ loc]〉 :: SF 〉

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-virtual v1 meth
iff meth = java/lang/Class->newInstance

∀(ObjRef (java/lang/Class,m′, pc′)) ∈ R̂(v1):
∀(ObjRef (java/lang/String,ms, pcs)) ∈

Ĥ(ObjRef (java/lang/Class,m′, pc′))(name):

∀clname ∈ Ĥ(ObjRef (java/lang/String,ms, pcs))(value):
cl = lookupClass(clname)

{ObjRef (cl ,m, pc)} ⊆ R̂(m, pc+ 1)(retval)
m′ = lookupDefaultConstructor(cl)

{ObjRef (cl ,m, pc)} ⊆ R̂(m′, 0)(m′.numLocals)

R̂(m, pc) v{retval} R̂(m, pc+ 1)
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m.instructionAt(pc) = invoke-virtual v1 v2 v3 meth
meth = java/lang/reflect/Method->invoke R(v1) = loc1 6= null

o1 = H(loc1) o1.class � java/lang/reflect/Method

meth ′ = methodSignature(H, o1) R(v2) = loc2 6= null o2 = H(loc2)
R(v3) = loc3 a = H(loc3) ∈ Array m′ = resolveMethod(meth ′, o2.class)
a′ = unboxArgs(a,m′.argTypes, H) bf = getBoxingFrame(m′.returnType)

R′ = [0 7→ ⊥, . . . ,m′.numLocals − 1 7→ ⊥,
m′.numLocals 7→ a′.value(0), . . . ,m′.numLocals + a′.length− 1 7→ a′.value(a′.length− 1)]

A ` 〈S,H, 〈m, pc,R〉 :: SF 〉 =⇒ 〈S,H, 〈m′, 0, R′〉 :: bf :: 〈m, pc,R〉 :: SF 〉

(Ŝ, Ĥ, R̂, Ê) |= (m, pc): invoke-virtual v1 v2 v3 meth
iff meth = java/lang/reflect/Method->invoke

∀(ObjRef (java/lang/reflect/Method,mm, pcm)) ∈ R̂(m, pc)(v1):

∀meth ′ ∈ methodSignatures(Ĥ,ObjRef (java/lang/reflect/Method,mm, pcm)):

∀(ObjRef (clr,mr, pcr)) ∈ R̂(m, pc)(v2):
m′ = resolveMethod(meth ′, clr)

{ObjRef (clr,mr, pcr)} ⊆ R̂(m′, 0)(m′.numLocals)
∀1 ≤ i ≤ arity(meth ′):

∀(ArrRef (a,ma, pca)) ∈ R̂(m, pc)(v3):

Ĥ(ArrRef (a,ma, pca)) v R̂(m′, 0)(m′.numLocals + i)

∀(ObjRef (clo,mo, pco)) ∈ Ĥ(ArrRef (a,ma, pca)):
isBoxClass(clo) ⇒
Ĥ(ObjRef (clo,mo, pco))(value) v R̂(m′, 0)(m′.numLocals + i)

m′.returnType = void ⇒ β(null) v R̂(m, pc+ 1)(retval)

m′.returnType ∈ RefType ⇒ R̂(m′,END) v R̂(m, pc+ 1)(retval)
m′.returnType ∈ PrimType ⇒
clb = primToBoxClass(m′.returnType)

R̂(m′,END) v Ĥ(ObjRef (clb,m, pc))(value)

{ObjRef (clb,m, pc)} ⊆ R̂(m, pc+ 1)(retval)

∀(ExcRef (cle,me, pce)) ∈ Ê(m′):
HANDLE(R̂,Ê)((ExcRef (cle,me, pce)), (m, pc))

R̂(m, pc) v{retval} R̂(m, pc+ 1)
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